求不定积分∫e^x/(e^x +x ) dx
3个回答
展开全部
具体过程如图所示:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
扩展资料:
如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x)。即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。
在一维实空间中,一个区间A= [a,b] 的勒贝格测度μ(A)是区间的右端值减去左端值,b−a。这使得勒贝格积分和正常意义上的黎曼积分相兼容。在更复杂的情况下,积分的集合可以更加复杂,不再是区间,甚至不再是区间的交集或并集,其“长度”则由测度来给出。
参考资料来源:百度百科——不定积分
展开全部
你好,这个被积函数的结果是不初等的,一般指数与多项式组合的倒数也是
楼上的做法连题目也对不上
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”
楼上的做法连题目也对不上
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫dx/(e^x-e^(-x))
=∫e^xdx/(e^2x-1)
=∫1/(e^2x-1)de^x
=1/2∫[1/(e^x-1)-1/(e^x+1)]de^x
=1/2ln(e^x-1)-1/2ln(e^x+1)+C
=∫e^xdx/(e^2x-1)
=∫1/(e^2x-1)de^x
=1/2∫[1/(e^x-1)-1/(e^x+1)]de^x
=1/2ln(e^x-1)-1/2ln(e^x+1)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询