自由度是什么?

 我来答
学习方法与心理疏导
高粉答主

2018-03-08 · 学习使你更健康、快乐!
学习方法与心理疏导
采纳数:24992 获赞数:152157

向TA提问 私信TA
展开全部

在物理学中,自由度是指描述一个物理状态,独立对物理状态结果产生影响的变量的数量。

如运动自由度是确定一个系统在空间中的位置所需要的最小坐标数。例如火车车厢沿铁轨的运动,只需从某一起点站沿铁轨量出路程,就可完全确定车厢所在的位置,即其位置用一个量就可确定,我们说火车车厢的运动有一个自由度;汽车能在地面上到处运动,自由程度比火车大些,需要用两个量(例如直角坐标x,y)才能确定其位置,我们说汽车的运动有两个自由度;飞机能在空中完全自由地运动,需要用三个量(例如直角坐标x,y,z)才能确定其位置,我们说飞机在空中的运动有三个自由度。所谓自由度数就是确定物体在空间的位置所需独立坐标的数目。

在力学里,自由度指的是力学系统的独立坐标的个数。力学系统由一组坐标来描述。比如一个质点在三维空间中的运动,在笛卡尔坐标系中,由 x,y,z 三个坐标来描述;或者在球坐标系中,由 r,θ,ψ三个坐标描述,一般而言,N 个质点组成的力学系统由 3N 个坐标来描述。但力学系统中常常存在着各种约束,使得这 3N 个坐标并不都是独立的。对于 N 个质点组成的力学系统,若存在 m 个完整约束,则系统的自由度减为

s=3n-m。

比如,运动于平面的一个质点,其自由度为 2。又或是,在空间中的两个质点,中间以线连接。所以其自由度

s=3x2-1=5。

( 2 个质点有 3 个位移方向,但具有一条线所形成的约束)

除了平移自由度外,还有转动自由度及振动自由度

完全确定一个物体在空间位置所需要的独立坐标的数目,叫做这个物体的自由度。力学系统由一组坐标来描述。

热力学中的能量均分定理,每个自由度的能量相等(当然没考虑量子效应啦),都为Tk/2(振动包括动能和势能,所以振动能量为(Tk/2)*2)。

原子分子仅有3个平动自由度,所以分子平均能量为3Tk/2;

非刚性双原子分子有3个平动自由度、2个转动自由度、1个振动自由度,所以分子平均能量为(3+2+1*2)Tk/2=7Tk/2;

非刚性n原子分子共有3n个自由度(n为原子个数,n>2),包括3个平动自由度、3个(非线性分子,如H₂O)或2个(线性分子,如CO₂)转动自由度、3n-6个(非线性分子)或3n-5个(线性分子)振动自由度,所以分子平均能量为(6n-6)Tk/2或(6n-5)Tk/2;

刚性分子则不用考虑振动。

但不能说每个分子的能量都是iTk/2,这是统计规律。

质点自由度

(1)一个质点在空间任意运动,需用三个独立坐标(x,y,z)确定其位置。所以自由质点有三个平动自由度 i = 3。

(2)如果对质点的运动加以限制(约束),自由度将减少。如质点被限制在平面或曲面上运动,则 i= 2;如果质点被限制在直线或平面曲线(不是空间曲线)上运动,则其自由度 i = 1。

刚体自由度

一个刚体在空间任意运动时,可分解为质心 O’ 的平动和绕通过质心某直线的定轴转动,它既有平动自由度还有转动自由度。确定刚体质心O’的位置,需三个独立坐标(x,y,z)—自由刚体有三个平动自由度 t = 3;

确定刚体通过质心轴的空间方位──三个方位角(α,β,γ)中只有其中两个是独立的──需两个转动自由度;另外还要确定刚体绕通过质心轴转过的角度θ──还需一个转动自由度。这样,确定刚体绕通过质心轴的转动,共有三个转动自由度 r = 3。所以,一个任意运动的刚体,总共有6个自由度,即3个平动自由度和3个转动自由度,即i = t + r = 3 + 3 = 6

分子自由度

自由度是物体运动方程中可以写成的独立坐标数,单原子分子有3个自由度,双原子、非线性三原子、线性三原子不考虑振动相当于刚体,分别有5个(3平2转)、6个(3平3转)、5个(3平2转)自由度,考虑振动后,双原子加1个,非线性三原子加3个,线性三原子加4个。

(1)单原子分子:如氦He、氖Ne、氩Ar等分子只有一个原子,可看成自由质点,所以有3个平动自由度 i = t = 3。

(2)刚性双原子分子如氢 、氧 、氮 、一氧化碳CO等分子,两个原子间联线距离保持不变。就像两个质点之间由一根质量不计的刚性细杆相连着(如同哑铃),确定其质心O’的空间位置,需3个独立坐标(x,y,z);确定质点联线的空间方位,需两个独立坐标(如α,β),而两质点绕联线的的转动没有意义。所以刚性双原子分子既有3个平动自由度,又有2个转动自由度,总共有5个自由度 i = t + r =3 + 2 = 5。

(3)刚性三原子或多原子分子:如 H2O 、氨 等,只要各原子不是直线排列的,就可以看成自由刚体,共有6个自由度,i = t + r = 3 + 3 = 6。若原子直线排列,如CO2等,共有5个自由度,i = t + r = 3 + 2 = 5。

(4)对于非刚性分子,由于在原子之间相互作用力的支配下,分子内部还有原子的振动,因此还应考虑振动自由度(以S 表示)。如非刚性双原子分子,好像两原子之间有一质量不计的细弹簧相连接,则振动自由度 s = 1。对于非刚性n原子分子(n>2),振动自由度 s = 3n - 6(非线性)或s =3n - 5(线性)。 

一般在常温下,气体分子都近似看成是刚性分子,振动自由度可以不考虑。

力学系统由一组坐标来描述。比如一个质点的三维空间中的运动,在笛卡尔坐标系中,由x,y,z三个坐标来描述;或者在球坐标系中,由r,θ,φ三个坐标描述。一般的,N个质点组成的力学系统由3N个坐标来描述。但力学系统中常常存在着各种约束,使得这3N个坐标并不都是独立的。对于N个质点组成的力学系统,若存在m个约束,则系统的自由度为S = 3N - m

注意此处的气体分子自由度与在对气体分子作热力学能量分析的自由度不同,在做热力学能量分析时还应考虑气体之间的势能变化,故会多出一个自由度。

热力学自由度

热力学中,自由度 F 是当系统为平衡状态时,在不改变相对数目情况下,可独立改变的因素(如温度和压力),这些变量的数目叫做自由度数。例如,液态水系统,可以在一定范围内任意改变温度和压力,仍可保持单相的水不变,则该系统的自由度为2,记作F = 2。若系统是液态水与水蒸气平衡共存,如果指定温度,则系统压力必须等于该温度下的水的饱和蒸汽压,否则系统中汽、液两相就会有一相消失,这时压力并不能任意选择,故自由度数为1,即F = 1。也就是说,若系统保持汽-液共存的相态不变,温度和压力两者中只能任意变动一个。因此自由度数实际上是系统的独立变量数。

系统的自由度跟其他变量的关系

F = C - P + n

其中 F:表示系统的自由度

C :系统的独立组元数(number of independent component)

P :相态数目

n :外界因素,多数取n=2,代表压力和温度;对于熔点极高的固体,蒸汽压的影响非常小,可取n=1。

资料来源:网页链接

摘箕軯
2013-10-11 · TA获得超过4309个赞
知道小有建树答主
回答量:1020
采纳率:0%
帮助的人:2403万
展开全部
??翻看了以前的教材以及到网上查阅了大量相关资料,原来,不仅仅是统计学里有自由度的概念呀!下面把有关自由度的问题点简要归纳一下。
??理论力学:确定物体的位置所需要的独立坐标数称作物体的自由度,当物体受到某些限制时——自由度减少。一个质点在空间自由运动,它的位置由三个独立坐标就可以确定,所以质点的运动有三个自由度。假如将质点限制在一个平面或一个曲面上运动,它有两个自由度。假如将质点限制在一条直线或一条曲线上运动,它只有一个自由度。刚体在空间的运动既有平动也有转动,其自由度有六个,即三个平动自由度x、y、z和三个转动自由度a、b、q。如果刚体运动存在某些限制条件,自由度会相应减少。
??热力学中:分子运动自由度就是决定一个分子在空间的位置所需要的独立坐标数目。
??统计学中:在统计模型中,自由度指样本中可以自由变动的变量的个数,当有约束条件时,自由度减少自由度计算公式:自由度=样本个数-样本数据受约束条件的个数,即df = n - k(df自由度,n样本个数,k约束条件个数)
??一般总体方差(sigma^2),其实它是衡量所有数据对于中心位置(总体平均)平均差异的概念,所以也称为离散程度,通常表示为sum(Xi-Xbar)^1/2/N ,(有多少个数据就除多少)而样本方差(S^2),则是利用样本数据所计算出来估计总体变异用的(样本统计量的基本目的:少量资料估计总体).一般习惯上,总体怎么算,样本就怎么算,可是在统计上估计量(或叫样本统计量)必须符合一个特性--无偏性,也就是估计量的数学期望值要等于被估计的总体参数= E(S^2)=sigma^2(无偏估计)。很不幸的,样本变异数E(S^2)并不会等于sigma^2所以必须做修正,而修正后即为sum(Xi-Xbar)^2/(N-1).才会继续带出后来的自由度概念。(自由度是由修正样本统计量得来的吗?)
??网上一些文献的说法也是林林总总。
??金志成实验设计书中的定义:能独立变化的数据数目。只要有n-1个数确定,第n个值就确定了,它不能自由变化。所以自由度就是n-1。自由度表示的是一组数据可以自由表化的数量的多少。
??通俗点说,一个班上有50个人,我们知道他们语文成绩平均分为80,现在只需要知道49个人的成绩就能推断出剩下那个人的成绩。你可以随便报出49个人的成绩,但是最后一个人的你不能瞎说,因为平均分已经固定下来了,自由度少一个了。
??自由度的设定是出于这样一个理由:在总体平均数未知时,用样本平均数去计算离差(常用小s)会受到一个限制————要计算标准差(小s)就必须先知道样本平均数,而样本平均数和n都知道的情况下,数据的总和就是一个常数了。所以,“最后一个”样本数据就不可以变了,因为它要是变,总和就变了,而这是不允许的。至于有的自由度是n-2什么的,都是同样道理。
??n-1是通常的计算方法,更准确的讲应该是n-k,n表示“处理”的数量,k表示实际需要计算的参数的数量。如需要计算2个参数,则数据里只有n-2个数据可以自由变化。例如,一组数据,平均数一定,则这组数据有n-1个数据可以自由变化;如一组数据平均数一定,标准差也一定,则有n-2个数据可以自由变化。df=n-k的得出是需要大量的数理统计的证明的。太复杂的情况,我们就不讨论了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
綖垒藙亍
2018-02-04 · TA获得超过3787个赞
知道大有可为答主
回答量:3113
采纳率:90%
帮助的人:1497万
展开全部
自由度的定义:
统计学上的自由度:自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数,称为该统计量的自由度。一般来说,自由度等于独立变量减掉其衍生量数。举例来说,变异数的定义是样本减平均值(一个由样本决定的衍生量),因此对N个随机样本而言,其自由度为N-1。
数学上的自由度:自由度是一个随机向量的维度数,也就是一个向量能被完整描述所需的最少单位向量数。自由度也通常与这些向量的坐标平方和,以及卡方分布中的参数有所关联 。
物理学上:在力学里,自由度指的是力学系统的独立坐标的个数。一般而言,N 个质点组成的力学系统由 3N 个坐标来描述。但力学系统中常常存在着各种约束,使得这 3N 个坐标并不都是独立的。对于 N 个质点组成的力学系统,若存在 m 个完整约束,则系统的自由度减为s=3n-m。
在机械系统上的自由度:根据机械原理,机构具有确定运动时所必须给定的独立运动参数的数目(亦即为了使机构的位置得以确定,必须给定的独立的广义坐标的数目),称为机构自由度,其数目常以F表示。
F=3n-(2PL +Ph ) n:活动构件数,PL:低副约束数 Ph:高副约束数
自由度的应用:
1.若存在两个变量a、b,而a+b=6那么他的自由度为1。因为其实只有a才能真正的自由变化,b会被a选值的不同所限制。
2.估计总体的平均数时,由于样本中的n个数都是相互独立的,任一个尚未抽出的数都不受已抽出任何数值的影响,所以自由度为n。
3.估计总体的方差时所使用的统计量是样本的方差,而s必须用到样本平均数来计算。在抽样完成后已确定,所以大小为n的样本中只要n-1个数确定了,第n个数就只有一个能使样本符合样本平均数的数值。也就是说,样本中只有n-1个数可以自由变化,只要确定了这n-1个数,方差也就确定了。这里,平均数就相当于一个限制条件,由于加了这个限制条件,样本方差s的自由度为n-1。
4.统计模型的自由度等于可自由取值的自变量的个数。如在回归方程中,如果共有 p个参数需要估计,则其中包括了p-1 个自变量(与截距对应的自变量是常量)。因此该回归方程的自由度为p-1 。
5.在一个包含n个个体的总体中,平均数为m了n-1个个体时,剩下的一个个体不可以随意变化。为什么总体方差计算,是除以n而不是n-1呢?方差是实际值与期望值之差平方的期望值,所以已知道总体均值或其他统计参数时方差应除以 n,除以n-1时是方差的一个无偏估计。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帆雨科普
2021-01-02 · 随时停更,请勿关注。
个人认证用户
帆雨科普
采纳数:3 获赞数:203

向TA提问 私信TA
展开全部

机械原理,什么是自由度

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
科协共建
2019-11-13 · TA获得超过937个赞
知道答主
回答量:1386
采纳率:0%
帮助的人:76.1万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式