求解高中数学问题 30
展开全部
f(x)=(x+2)/x,g(x)=x/(x+2)
|g(sinx)*f(a)|=|sinx/(sinx+2)*(a+2)/a|
=|(1+2/a)/(1+2cscx)|
=|1+2/a|/|1+2cscx|
因为|g(sinx)*f(a)|=|1+2/a|/|1+2cscx|<=1恒成立
所以|1+2/a|<=|1+2cscx|
1+4/a+4/a^2<=1+4cscx+4csc^2x
1/a+1/a^2<=cscx+csc^2x=(cscx+1/2)^2-1/4恒成立
因为cscx<=-1或cscx>=1,所以(cscx+1/2)^2-1/4恒>=0
所以1/a+1/a^2<=0
(1+1/a)*(1/a)<=0
-1<=1/a<=0
a<=-1
|g(sinx)*f(a)|=|sinx/(sinx+2)*(a+2)/a|
=|(1+2/a)/(1+2cscx)|
=|1+2/a|/|1+2cscx|
因为|g(sinx)*f(a)|=|1+2/a|/|1+2cscx|<=1恒成立
所以|1+2/a|<=|1+2cscx|
1+4/a+4/a^2<=1+4cscx+4csc^2x
1/a+1/a^2<=cscx+csc^2x=(cscx+1/2)^2-1/4恒成立
因为cscx<=-1或cscx>=1,所以(cscx+1/2)^2-1/4恒>=0
所以1/a+1/a^2<=0
(1+1/a)*(1/a)<=0
-1<=1/a<=0
a<=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询