(当n趋向∞)nsin(π/n)的极限怎么做?
网上解法为:(当n趋向∞)nsin(π/n)=n[sin(π/n)]/(π/n)*(π/n)令t=π/n,所以n[sin(π/n)]/(π/n)*(π/n)=n(sint...
网上解法为:
(当n趋向∞)
nsin(π/n)
=n[sin(π/n)]/(π/n)*(π/n)
令t=π/n,所以n[sin(π/n)]/(π/n)*(π/n)=n(sint)/t*(π/n)
=n*(π/n)
=π
此题运用了lim(x→∞)sinx/x=1这一定律,但nsin(π/n)=n[sin(π/n)]/(π/n)*(π/n),其中的等号后分母中的(π/n)*(π/n)是怎么来的,求解? 展开
(当n趋向∞)
nsin(π/n)
=n[sin(π/n)]/(π/n)*(π/n)
令t=π/n,所以n[sin(π/n)]/(π/n)*(π/n)=n(sint)/t*(π/n)
=n*(π/n)
=π
此题运用了lim(x→∞)sinx/x=1这一定律,但nsin(π/n)=n[sin(π/n)]/(π/n)*(π/n),其中的等号后分母中的(π/n)*(π/n)是怎么来的,求解? 展开
3个回答
展开全部
(当n趋向∞)nsin(π/n)的极限解法:
当n趋向∞,
limnsin(π/n)
=lim n*[sin(π/n)]/(π/n)*(π/n)
=lim n*(π/n)*[sin(π/n)]/(π/n)
=lim [n*(π/n)]*[sin(π/n)/(π/n)]
=lim π*[sin(π/n)/(π/n)]
=π*lim[sin(π/n)/(π/n)]
=π
在重要极限中lim(x→0)sinx/x=1,取x=(π/n),即有lim[sin(π/n)/(π/n)]=1
或者:因为当n趋向∞时,π/n趋向0,sin(π/n)和π/n是同阶无穷小,所以当n趋向∞时,lim[sin(π/n)/(π/n)]=1
当n趋向∞,
limnsin(π/n)
=lim n*[sin(π/n)]/(π/n)*(π/n)
=lim n*(π/n)*[sin(π/n)]/(π/n)
=lim [n*(π/n)]*[sin(π/n)/(π/n)]
=lim π*[sin(π/n)/(π/n)]
=π*lim[sin(π/n)/(π/n)]
=π
在重要极限中lim(x→0)sinx/x=1,取x=(π/n),即有lim[sin(π/n)/(π/n)]=1
或者:因为当n趋向∞时,π/n趋向0,sin(π/n)和π/n是同阶无穷小,所以当n趋向∞时,lim[sin(π/n)/(π/n)]=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
nsin(π/n)={n[sin(π/n)]/(π/n)}*(π/n)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询