学霸们这道题怎么求啊
展开全部
解:
f(x)=log2(4x²)·log2(x/8)
=[log2(4)+log2(x²)][log2(x)-log2(8)]
=[2+2log2(x)][log2(x)-3]
=2[log2(x)]²-4log2(x)-6
=2[log2(x) -1]²-8
x∈[¼,4],则-2≤log2(x)≤2
log2(x)=1时,f(x)取得最小值,f(x)min=-8
log2(x)=-2时,f(x)取得最大值,f(x)max=2(-2-1)²-8=10
函数f(x)的值域为[-8,10]
f(x)=log2(4x²)·log2(x/8)
=[log2(4)+log2(x²)][log2(x)-log2(8)]
=[2+2log2(x)][log2(x)-3]
=2[log2(x)]²-4log2(x)-6
=2[log2(x) -1]²-8
x∈[¼,4],则-2≤log2(x)≤2
log2(x)=1时,f(x)取得最小值,f(x)min=-8
log2(x)=-2时,f(x)取得最大值,f(x)max=2(-2-1)²-8=10
函数f(x)的值域为[-8,10]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询