高手们帮帮忙吧!一道很难的数学题
圆O是四边形ABCD的外接圆,延长AB,CD交于点Q;延长AD,BC交于点P。PE是圆O的切线,E是圆的切点。连接QE,PO。求证:QE垂直于PO...
圆O是四边形ABCD的外接圆,延长AB,CD交于点Q;延长AD,BC交于点P。PE是圆O的切线,E是圆的切点。连接QE,PO。
求证:QE垂直于PO 展开
求证:QE垂直于PO 展开
1个回答
展开全部
题目应该是AB,DC交于点Q吧。
证明:连结OE,OQ,PQ,过Q任作⊙O的一条切线,切点为G,连结OG,在PQ上找一点F,使B,C,Q,F四点共圆,连结CF
因为B,C,Q,F四点共圆,所以∠PFC=∠PBQ,而∠PBQ=∠ADQ,所以∠PFC=∠ADQ,所以P,F,C,D四点共圆
PE²=PC·PB,而PC·PB=PF·PQ,所以PE²=PF·PQ,所以PQ²-PE²=PQ²-PF·PQ=PQ(PQ-PF)=QF·QP,又锋喊闭QF·QP=QC·QD,QC·QD=QG²,所渗亩以PQ²-PE²=QG²。又因为QG是切线,所以OG⊥QG,所以QG²=QO²-OG²=QO²-OE²,综上所述,PQ²-PE²=QO²-OE²
所银裂以 (向量PQ)²-(向量PE)²=(向量QO)²-(向量OE)²,即 (向量PQ+向量PE)·(向量PQ-向量PE)=(向量QO+向量OE)·(向量QO-向量OE),即 (向量PQ+向量PE)·向量EQ=向量QE·(向量QO-向量OE),移项得 向量EQ·(向量PQ+向量PE+向量QO-向量OE)=0,向量EQ·(2向量PO)=0,所以EQ⊥PO
事实上,由PQ²-PE²=QO²-OE²可以直接推出EQ⊥PO,这是一条定理,只是名称我忘了。
证明:连结OE,OQ,PQ,过Q任作⊙O的一条切线,切点为G,连结OG,在PQ上找一点F,使B,C,Q,F四点共圆,连结CF
因为B,C,Q,F四点共圆,所以∠PFC=∠PBQ,而∠PBQ=∠ADQ,所以∠PFC=∠ADQ,所以P,F,C,D四点共圆
PE²=PC·PB,而PC·PB=PF·PQ,所以PE²=PF·PQ,所以PQ²-PE²=PQ²-PF·PQ=PQ(PQ-PF)=QF·QP,又锋喊闭QF·QP=QC·QD,QC·QD=QG²,所渗亩以PQ²-PE²=QG²。又因为QG是切线,所以OG⊥QG,所以QG²=QO²-OG²=QO²-OE²,综上所述,PQ²-PE²=QO²-OE²
所银裂以 (向量PQ)²-(向量PE)²=(向量QO)²-(向量OE)²,即 (向量PQ+向量PE)·(向量PQ-向量PE)=(向量QO+向量OE)·(向量QO-向量OE),即 (向量PQ+向量PE)·向量EQ=向量QE·(向量QO-向量OE),移项得 向量EQ·(向量PQ+向量PE+向量QO-向量OE)=0,向量EQ·(2向量PO)=0,所以EQ⊥PO
事实上,由PQ²-PE²=QO²-OE²可以直接推出EQ⊥PO,这是一条定理,只是名称我忘了。
参考资料: 偶老师
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询