怎样证明函数的连续性

 我来答
姓撞淘I
高粉答主

2020-03-05 · 每个回答都超有意思的
知道答主
回答量:24.2万
采纳率:1%
帮助的人:1.2亿
展开全部
龙fei3
2018-07-22 · TA获得超过6660个赞
知道小有建树答主
回答量:75
采纳率:100%
帮助的人:2.3万
展开全部

1、若知该函数为初等函数,则在其定义域上均连续;

2、若该函数为一元函数,则可对该函数求导,其导数在某点上有意义则函数则该点必然连续(可导必连续);

3、对该函数求极限,若左极限等于右极限等于该点的值,则函数连续。

扩展资料:

连续性与可导性关系:连续是可导的必要条件,即函数可导必然连续;不连续必然不可 导;连续不一定可导。典型例子:含尖点的连续函数

参考资料:

函数连续性的证明-百度文库

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
向若然
2018-07-25 · TA获得超过270个赞
知道答主
回答量:16
采纳率:0%
帮助的人:5091
展开全部

函数连续性的定义:

设函数f(x)在点x0的某个邻域内有定义,若lim(x→x0)f(x)=f(x0),则称f(x)在点x0处连续。

若函数f(x)在区间I的每一点都连续,则称f(x)在区间I上连续。

判定函数连续求导就可以,如果可导就肯定连续。

拓展资料:

  • 函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。

  • 函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

  • 函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

  • 函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小小芝麻大大梦
高粉答主

2019-10-10 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:1005万
展开全部

1、证明一个分段函数是连续函数。

首先看各分段函数的函数式是不是连续(这就是一般的初等函数是否连续的做法)然后看分段函数的分段点,左右极限是否相等并等于函数值。

分段点处的左极限用左边的函数式做,分段点处的右极限用右边的函数式做。

2、多元函数在某点处的连续性证明

如果一个多元函数是连续的,那么一般的做法是这样:通过夹逼法,h(x)<f(x)<g(x),而h(x)与 g(x)的极限又是相等的,然后通过对比f(x)在某一点的函数值,最后得出结论是否相等.而一般的。

这种题目往往是探求在(0,0)这一点的连续性,而又往往左边h(x)是0,右边g(x)也是趋于零的.而g(x)趋于零通常又是运用基本不等式对它进行放缩最后求得极限。

扩展资料

所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。

绝对值函数也是连续的。

定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。

非连续函数的一个例子是分段定义的函数。例如定义f为:f(x) = 1如果x> 0,f(x) = 0如果x≤ 0。取ε = 1/2,不存在x=0的δ-邻域使所有f(x)的值在f(0)的ε邻域内。直觉上我们可以将这种不连续点看做函数值的突然跳跃。

另一个不连续函数的例子为符号函数。

参考资料来源:百度百科-连续

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
徐天来11
高粉答主

2016-12-26 · 关注我不会让你失望
知道大有可为答主
回答量:2.5万
采纳率:89%
帮助的人:3859万
展开全部
怎样证明函数的连续性
若函数f(x)在定义域内一点x0满足x趋于x0时的f(x)的极限=f(x0),则称f(x)在该点连续。至于证明函数的连续性,就是使用这个定义证明。其实,真正用到连续性时,都是由那几个基本函数的连续性推导出来的,基本上不需要什么证明。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式