函数的极值与极限有什么区别

 我来答
O客
2017-03-26 · TA获得超过3.3万个赞
知道大有可为答主
回答量:7652
采纳率:88%
帮助的人:3430万
展开全部
区别非常大。它们没有关联。
极值,是函数性质;是函数在部分区间上的最大值或最小值;是函数值域里的数。函数可能多个自变量取得同一个极值。
极限,是一种运算;是当自变量无限趋于某一个数x0时,函数无限趋于一个确定值。这个确定值可能不是函数值域的数。换言之,函数可能在x0无意义。
例如,f(x)=(x^3-1)/(x-1),
x→1limf(x)=lim(x²+x+1)=3,极限是3.
化简f(x)= x²+x+1,x≠1,有f(x)≠3。又x²+x+1=(x+1/2)²+3/4≥3/4,
函数值域是[3/4,3)∪(3,+∞)。
可见3不是值域的数。
易知f(x)极小值=3/4,它是值域的数。
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式