高一数学题,集合,怎样从数轴上来看并集的范围?交集我会。
3个回答
展开全部
这里结合具体的图例来讲解:
并集的范围是指只要两个集合中任意一个集合占据了数轴的一部分,就属于并集的一部分,比如集合A=(-∞,1],集合B=(3,+∞)的并集在数轴上标示如图所示:
计算集合A和集合B的并集,从图上看为阴影部分,为(-∞,1]或者(3,+∞)。
扩展资料:
1、数轴能形象地表示数,横向数轴上的点和实数成一一对应,即每一个实数都可以用数轴上的一个点来表示.
2、比较实数大小,以0为中心,右边的数比左边的数大。
3、虚数也可以用垂直于横向数轴且同一原点的纵向数轴表示,这样就与横向数轴构成了复数平面。
4、用两根互相垂直且有同一原点的数轴可以构成平面直角坐标系;用三根互相垂直且有同一原点的数轴可以构成空间直角坐标系,以确定物体的位置。
数轴具有数的完备性,不仅能够表示有理数和无理数(合称实数),还能够表示虚数,同时还可以建立坐标系,构成了一个比较严密的数的系统。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询