大数据工程师到底是什么?
10个回答
2019-07-09 · 大数据人才培养的机构
加米谷大数据科技
成都加米谷大数据科技有限公司是一家专注于大数据人才培养的机构。公司由来自华为、京东、星环、勤智等国内知名企业的多位技术大牛联合创办。面向社会提供大数据、人工智能等前沿技术的培训业务。
向TA提问
关注
展开全部
用阿里巴巴集团研究员薛贵荣的话来说,大数据工程师就是一群“玩数据”的人,玩出数据的商业价值,让数据变成生产力。大数据和传统数据的最大区别在于,它是在线的、实时的,规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
沈志勇认为如果把大数据想象成一座不停累积的矿山,那么大数据工程师的工作就是,“第一步,定位并抽取信息所在的数据集,相当于探矿和采矿。第二步,把它变成直接可以做判断的信息,相当于冶炼。最后是应用,把数据可视化等。”
因此分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务。通过这三个工作方向,他们帮助企业做出更好的商业决策。
展开全部
大数据工程师是负责创建和维护数据分析基础架构,包括大数据架构的开发、构建、维护和测试等,还负责创建用于建模,挖掘,获取和验证数据集合等流程。
在一个成熟的数据驱动型公司,“大数据工程师”往往是一个团队,意味着从数据的收集、整理展现、分析和商业洞察、以至于市场转化的全过程。这个团队中可能包括数据工程师、分析师、产品专员、市场专员和商业决策者等角色,共同完成从原始数据到商业价值的转换—概括来讲,这是一个支持企业做出商业决策、发掘商业模式的重要群体。由于国内的大数据工作还处在一个有待开发的阶段,因此能从其中挖掘出多少价值完全取决于工程师的个人能力。已经身处这个行业的专家给出了一些人才需求的大体框架,包括要有计算机编码能力、数学及统计学相关背景,当然如果能对一些特定领域或行业有比较深入的了解,对于其快速判断并抓准关键因素则更有帮助。
想了解更多关于大数据工程师的相关详情,推荐咨询达内教育。该机构致力于面向IT互联网行业,培养软件开发工程师、测试工程师、UI设计师、网络营销工程师、会计等职场人才,拥有行业内完善的教研团队,强大的师资力量,200余位总监级讲师,1000余名教研人员,确保学员利益,全方位保障学员学习;更是与多家企业签订人才培养协议,全面助力学员更好就业。
在一个成熟的数据驱动型公司,“大数据工程师”往往是一个团队,意味着从数据的收集、整理展现、分析和商业洞察、以至于市场转化的全过程。这个团队中可能包括数据工程师、分析师、产品专员、市场专员和商业决策者等角色,共同完成从原始数据到商业价值的转换—概括来讲,这是一个支持企业做出商业决策、发掘商业模式的重要群体。由于国内的大数据工作还处在一个有待开发的阶段,因此能从其中挖掘出多少价值完全取决于工程师的个人能力。已经身处这个行业的专家给出了一些人才需求的大体框架,包括要有计算机编码能力、数学及统计学相关背景,当然如果能对一些特定领域或行业有比较深入的了解,对于其快速判断并抓准关键因素则更有帮助。
想了解更多关于大数据工程师的相关详情,推荐咨询达内教育。该机构致力于面向IT互联网行业,培养软件开发工程师、测试工程师、UI设计师、网络营销工程师、会计等职场人才,拥有行业内完善的教研团队,强大的师资力量,200余位总监级讲师,1000余名教研人员,确保学员利益,全方位保障学员学习;更是与多家企业签订人才培养协议,全面助力学员更好就业。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.找出过去事件的特征
大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。比如,腾讯的数据团队正在搭建一个数据仓库,把公司所有网络平台上数量庞大、不规整的数据信息进行梳理,总结出可供查询的特征,来支持公司各类业务对数据的需求,包括广告投放、游戏开发、社交网络等。
找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。“你可以知道他是什么样的人、他的年纪、兴趣爱好,是不是互联网付费用户、喜欢玩什么类型的游戏,平常喜欢在网上做什么事情。”腾讯云计算有限公司北京研发中心总经理郑立峰说。下一步到了业务层面,就可以针对各类人群推荐相关服务,比如手游,或是基于不同特征和需求衍生出新的业务模式,比如微信的电影票业务。
2.预测未来可能发生的事情
通过引入关键因素,大数据工程师可以预测未来的消费趋势。在阿里妈妈的营销平台上,工程师正试图通过引入气象数据来帮助淘宝卖家做生意。“比如今年夏天不热,很可能某些产品就没有去年畅销,除了空调、电扇,背心、游泳衣等都可能会受其影响。那么我们就会建立气象数据和销售数据之间的关系,找到与之相关的品类,提前警示卖家周转库存。”薛贵荣说。
在百度,沈志勇支持“百度预测”部分产品的模型研发,试图用大数据为更广泛的人群服务。已经上线的包括世界杯预测、高考预测、景点预测等。以百度景点预测为例,大数据工程师需要收集所有可能影响一段时间内景点人流量的关键因素进行预测,并为全国各个景点未来的拥挤度分级—在接下来的若干天时间里,它究竟是畅通、拥挤,还是一般拥挤?
3.找出最优化的结果
根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。
以腾讯来说,郑立峰认为能反映大数据工程师工作的最简单直接的例子就是选项测试(AB Test),即帮助产品经理在A、B两个备选方案中做出选择。在过去,决策者只能依据经验进行判断,但如今大数据工程师可以通过大范围地实时测试—比如,在社交网络产品的例子中,让一半用户看到A界面,另一半使用B界面,观察统计一段时间内的点击率和转化率,以此帮助市场部做出最终选择。
大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。比如,腾讯的数据团队正在搭建一个数据仓库,把公司所有网络平台上数量庞大、不规整的数据信息进行梳理,总结出可供查询的特征,来支持公司各类业务对数据的需求,包括广告投放、游戏开发、社交网络等。
找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。“你可以知道他是什么样的人、他的年纪、兴趣爱好,是不是互联网付费用户、喜欢玩什么类型的游戏,平常喜欢在网上做什么事情。”腾讯云计算有限公司北京研发中心总经理郑立峰说。下一步到了业务层面,就可以针对各类人群推荐相关服务,比如手游,或是基于不同特征和需求衍生出新的业务模式,比如微信的电影票业务。
2.预测未来可能发生的事情
通过引入关键因素,大数据工程师可以预测未来的消费趋势。在阿里妈妈的营销平台上,工程师正试图通过引入气象数据来帮助淘宝卖家做生意。“比如今年夏天不热,很可能某些产品就没有去年畅销,除了空调、电扇,背心、游泳衣等都可能会受其影响。那么我们就会建立气象数据和销售数据之间的关系,找到与之相关的品类,提前警示卖家周转库存。”薛贵荣说。
在百度,沈志勇支持“百度预测”部分产品的模型研发,试图用大数据为更广泛的人群服务。已经上线的包括世界杯预测、高考预测、景点预测等。以百度景点预测为例,大数据工程师需要收集所有可能影响一段时间内景点人流量的关键因素进行预测,并为全国各个景点未来的拥挤度分级—在接下来的若干天时间里,它究竟是畅通、拥挤,还是一般拥挤?
3.找出最优化的结果
根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。
以腾讯来说,郑立峰认为能反映大数据工程师工作的最简单直接的例子就是选项测试(AB Test),即帮助产品经理在A、B两个备选方案中做出选择。在过去,决策者只能依据经验进行判断,但如今大数据工程师可以通过大范围地实时测试—比如,在社交网络产品的例子中,让一半用户看到A界面,另一半使用B界面,观察统计一段时间内的点击率和转化率,以此帮助市场部做出最终选择。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
写 SQL (很多入职一两年的大数据工程师主要的工作就是写 SQL )
2 为集群搭大数据环境(一般公司招大数据工程师环境都已经搭好了,公司内部会有现成的大数据平台,但我这边会私下搞一套测试环境,毕竟公司内部的大数据系统权限限制很多,严重影响开发效率)
3 维护大数据平台(这个应该是每个大数据工程师都做过的工作,或多或少会承担“运维”的工作)
4 数据迁移(有部分公司需要把数据从传统的数据库 Oracle、MySQL 等数据迁移到大数据集群中,这个是比较繁琐的工作,吃力不讨好)
5 应用迁移(有部分公司需要把应用从传统的数据库 Oracle、MySQL 等数据库的存储过程程序或者SQL脚本迁移到大数据平台上,这个过程也是非常繁琐的工作,无聊,高度重复且麻烦,吃力不讨好)
6 数据采集(采集日志数据、文件数据、接口数据,这个涉及到各种格式的转换,一般用得比较多的是 Flume 和 Logstash)
7 数据处理
7.1 离线数据处理(这个一般就是写写 SQL 然后扔到 Hive 中跑,其实和第一点有点重复了)
7.2 实时数据处理(这个涉及到消息队列,Kafka,Spark,Flink 这些,组件,一般就是 Flume 采集到数据发给 Kafka 然后 Spark 消费 Kafka 的数据进行处理)
8 数据可视化(这个我司是用 Spring Boot 连接后台数据与前端,前端用自己魔改的 echarts)
9 大数据平台开发(偏Java方向的,大概就是把开源的组件整合起来整成一个可用的大数据平台这样,常见的是各种难用的 PaaS 平台)
10 数据中台开发(中台需要支持接入各种数据源,把各种数据源清洗转换为可用的数据,然后再基于原始数据搭建起宽表层,一般为了节省开发成本和服务器资源,都是基于宽表层查询出业务数据)
11 搭建数据仓库(这里的数据仓库的搭建不是指 Hive ,Hive 是搭建数仓的工具,数仓搭建一般会分为三层 ODS、DW、DM 层,其中DW是最重要的,它又可以分为DWD,DWM,DWS,这个层级只是逻辑上的概念,类似于把表名按照层级区分开来的操作,分层的目的是防止开发数据应用的时候直接访问底层数据,可以减少资源,注意,减少资源开销是减少 内存 和 CPU 的开销,分层后磁盘占用会大大增加,磁盘不值钱所以没什么关系,分层可以使数据表的逻辑更加清晰,方便进一步的开发操作,如果分层没有做好会导致逻辑混乱,新来的员工难以接手业务,提高公司的运营成本,还有这个建数仓也分为建离线和实时的)
总之就是离不开写 SQL ...
2 为集群搭大数据环境(一般公司招大数据工程师环境都已经搭好了,公司内部会有现成的大数据平台,但我这边会私下搞一套测试环境,毕竟公司内部的大数据系统权限限制很多,严重影响开发效率)
3 维护大数据平台(这个应该是每个大数据工程师都做过的工作,或多或少会承担“运维”的工作)
4 数据迁移(有部分公司需要把数据从传统的数据库 Oracle、MySQL 等数据迁移到大数据集群中,这个是比较繁琐的工作,吃力不讨好)
5 应用迁移(有部分公司需要把应用从传统的数据库 Oracle、MySQL 等数据库的存储过程程序或者SQL脚本迁移到大数据平台上,这个过程也是非常繁琐的工作,无聊,高度重复且麻烦,吃力不讨好)
6 数据采集(采集日志数据、文件数据、接口数据,这个涉及到各种格式的转换,一般用得比较多的是 Flume 和 Logstash)
7 数据处理
7.1 离线数据处理(这个一般就是写写 SQL 然后扔到 Hive 中跑,其实和第一点有点重复了)
7.2 实时数据处理(这个涉及到消息队列,Kafka,Spark,Flink 这些,组件,一般就是 Flume 采集到数据发给 Kafka 然后 Spark 消费 Kafka 的数据进行处理)
8 数据可视化(这个我司是用 Spring Boot 连接后台数据与前端,前端用自己魔改的 echarts)
9 大数据平台开发(偏Java方向的,大概就是把开源的组件整合起来整成一个可用的大数据平台这样,常见的是各种难用的 PaaS 平台)
10 数据中台开发(中台需要支持接入各种数据源,把各种数据源清洗转换为可用的数据,然后再基于原始数据搭建起宽表层,一般为了节省开发成本和服务器资源,都是基于宽表层查询出业务数据)
11 搭建数据仓库(这里的数据仓库的搭建不是指 Hive ,Hive 是搭建数仓的工具,数仓搭建一般会分为三层 ODS、DW、DM 层,其中DW是最重要的,它又可以分为DWD,DWM,DWS,这个层级只是逻辑上的概念,类似于把表名按照层级区分开来的操作,分层的目的是防止开发数据应用的时候直接访问底层数据,可以减少资源,注意,减少资源开销是减少 内存 和 CPU 的开销,分层后磁盘占用会大大增加,磁盘不值钱所以没什么关系,分层可以使数据表的逻辑更加清晰,方便进一步的开发操作,如果分层没有做好会导致逻辑混乱,新来的员工难以接手业务,提高公司的运营成本,还有这个建数仓也分为建离线和实时的)
总之就是离不开写 SQL ...
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一般的话大数据是负责公司互联网数据分析的一个职位,简单的说如购物网站上的根据你的浏览给你推荐一些商品,另外还有从海量的数据中分析出对公司发现有指引作用的信息等都是大数据需要做的,现在来说大数据需求非常大,很有发展前景
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询