
2个回答
展开全部
令g(x)=f(x)-x,由题意知g(x)连续
g(a)=f(a)-a<0,g(b)=f(b)-b>0
∴g(a)g(b)<0
∴根据零点定理可以知道存在ξ∈(a,b),使得g(ξ)=0,即 f(ξ)-ξ =0,得证。
零点定理:
设函数f(x)在[a,b]上连续,且f(a)f(b)<0,则存在ξ∈(a,b),使得f(ξ)=ξ
g(a)=f(a)-a<0,g(b)=f(b)-b>0
∴g(a)g(b)<0
∴根据零点定理可以知道存在ξ∈(a,b),使得g(ξ)=0,即 f(ξ)-ξ =0,得证。
零点定理:
设函数f(x)在[a,b]上连续,且f(a)f(b)<0,则存在ξ∈(a,b),使得f(ξ)=ξ
追问
下一题呢?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询