证明闭区间上连续函数的有界性定理,为什么不直接用

 我来答
力梦依b
2017-12-01 · TA获得超过896个赞
知道小有建树答主
回答量:1347
采纳率:84%
帮助的人:105万
展开全部
证明:
不失一般性,令:
F(x)=f[x+(1/2)] - f(x)
根据题意,显然,F(x)在[0,1/2]上连续
又∵
F(0)=f(1/2)-f(0)
F(1/2)=f(1)-f(1/2)
根据题意:
f(0)=f(1)

F(0)= -F(1/2)
根据零点定理,至少∃ξ∈(0,1/2),使得:
F(ξ)=0
即:
f[ξ+(1/2)] - f(ξ)=0
因此:
f[ξ+(1/2)]=f(ξ)
当:F(0)=F(1/2)=0时,
有:f(1)-f(1/2)=0
f(1)=f(1/2)
取ξ=1/2,则:f[ξ+(1/2)]=f(ξ)也成立
综上:
至少∃ξ∈(0,1/2],使得:f[ξ+(1/2)]=f(ξ)
证毕!
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式