什么是导数?
5个回答
展开全部
1、导数的定义
设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率.
如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即
函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导.
2、求导数的方法
由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法:
(1)求函数的增量△y=f(x0+△x)-f(x0);
(2)求平均变化率;
(3)取极限,得导数
3、导数的几何意义
函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0).
相应地,切线方程为y-y0= f′(x0)(x-x0).
4、几种常见函数的导数
函数y=C(C为常数)的导数 C′=0.
函数y=xn(n∈Q)的导数 (xn)′=nxn-1
函数y=sinx的导数 (sinx)′=cosx
函数y=cosx的导数 (cosx)′=-sinx
5、函数四则运算求导法则
和的导数 (u+v)′=u′+v′
差的导数 (u-v)′= u′-v′
积的导数 (u·v)′=u′v+uv′
商的导数 .
6、复合函数的求导法则
一般地,复合函数y=f[φ(x)]对自变量x的导数y′x,等于已知函数对中间变量u=φ(x)的导数y′u,乘以中间变量u对自变量x的导数u′x,即y′x=y′u·u′x.
7、对数、指数函数的导数
(1)对数函数的导数
①;
②.公式输入不出来
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
(2)指数函数的导数
①(ex)′=ex
②(ax)′=axlna
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
导数又叫微商,是因变量的微分和自变量微分之商;给导数取积分就得到原函数(其实是原函数与一个常数之和)。
设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率.
如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即
函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导.
2、求导数的方法
由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法:
(1)求函数的增量△y=f(x0+△x)-f(x0);
(2)求平均变化率;
(3)取极限,得导数
3、导数的几何意义
函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0).
相应地,切线方程为y-y0= f′(x0)(x-x0).
4、几种常见函数的导数
函数y=C(C为常数)的导数 C′=0.
函数y=xn(n∈Q)的导数 (xn)′=nxn-1
函数y=sinx的导数 (sinx)′=cosx
函数y=cosx的导数 (cosx)′=-sinx
5、函数四则运算求导法则
和的导数 (u+v)′=u′+v′
差的导数 (u-v)′= u′-v′
积的导数 (u·v)′=u′v+uv′
商的导数 .
6、复合函数的求导法则
一般地,复合函数y=f[φ(x)]对自变量x的导数y′x,等于已知函数对中间变量u=φ(x)的导数y′u,乘以中间变量u对自变量x的导数u′x,即y′x=y′u·u′x.
7、对数、指数函数的导数
(1)对数函数的导数
①;
②.公式输入不出来
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
(2)指数函数的导数
①(ex)′=ex
②(ax)′=axlna
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
导数又叫微商,是因变量的微分和自变量微分之商;给导数取积分就得到原函数(其实是原函数与一个常数之和)。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
应用: 如果一个函数f(x)在某个区间i上有f'(x)(即二阶导数)>0恒成立,那么对于区间i上的任意x,y,总有: f(x)+f(y)≥2f[(x+y)/2],如果总有f'(x)<0成立,那么上式的不等号反向。 意义 (1)斜线斜率变化的...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
先说明下,你如果把以下的方法弄明白了,那么导数对你就不会构成任何威胁了,提前恭喜你了!
方法如下:
这里将列举六类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来):
1.常函数(即常数)y=c(c为常数) y'=0 【y=0 y'=0:导数为本身的函数之一】
2.幂函数y=x^n,y'=n*x^(n-1)(n∈R) 【1/X的导数为-1/(X^2)】
基本导数公式
3.指数函数y=a^x,y'=a^x * lna 【y=e^x y'=e^x:导数为本身的函数之二】
4.对数函数y=logaX,y'=1/(xlna) (a>0且a≠1,x>0);【y=lnx,y'=1/x】
5.三角函数
(1)正弦函数y=(sinx )y'=cosx
(2)余弦函数y=(cosx) y'=-sinx
(3)正切函数y=(tanx) y'=1/(cosx)^2
(4)余切函数y=(cotx) y'=-1/(sinx)^2
6.反三角函数
(1)反正弦函数y=(arcsinx) y'=1/√1-x^2
(2)反余弦函数y=(arccosx) y'=-1/√1-x^2
(3)反正切函数y=(arctanx) y'=1/(1+x^2)
(4)反余切函数y=(arccotx) y'=-1/(1+x^2)
口诀
为了便于记忆,有人整理出了以下口诀:
常为零,幂降次,对导数(e为底时直接导数,a为底时乘以lna),指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式
推导
在推导的过程中有这几个常见的公式需要用到:
1.①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
2. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'.
3. 复合函数的导数:
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
4. 积分号下的求导法则:
d(∫f(x,t)dt φ(x),ψ(x))/dx=f(x,ψ(x))ψ'(x)-f(x,φ(x))φ'(x)+∫[f 'x(x,t)dt φ(x),ψ(x)]
方法如下:
这里将列举六类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来):
1.常函数(即常数)y=c(c为常数) y'=0 【y=0 y'=0:导数为本身的函数之一】
2.幂函数y=x^n,y'=n*x^(n-1)(n∈R) 【1/X的导数为-1/(X^2)】
基本导数公式
3.指数函数y=a^x,y'=a^x * lna 【y=e^x y'=e^x:导数为本身的函数之二】
4.对数函数y=logaX,y'=1/(xlna) (a>0且a≠1,x>0);【y=lnx,y'=1/x】
5.三角函数
(1)正弦函数y=(sinx )y'=cosx
(2)余弦函数y=(cosx) y'=-sinx
(3)正切函数y=(tanx) y'=1/(cosx)^2
(4)余切函数y=(cotx) y'=-1/(sinx)^2
6.反三角函数
(1)反正弦函数y=(arcsinx) y'=1/√1-x^2
(2)反余弦函数y=(arccosx) y'=-1/√1-x^2
(3)反正切函数y=(arctanx) y'=1/(1+x^2)
(4)反余切函数y=(arccotx) y'=-1/(1+x^2)
口诀
为了便于记忆,有人整理出了以下口诀:
常为零,幂降次,对导数(e为底时直接导数,a为底时乘以lna),指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式
推导
在推导的过程中有这几个常见的公式需要用到:
1.①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
2. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'.
3. 复合函数的导数:
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
4. 积分号下的求导法则:
d(∫f(x,t)dt φ(x),ψ(x))/dx=f(x,ψ(x))ψ'(x)-f(x,φ(x))φ'(x)+∫[f 'x(x,t)dt φ(x),ψ(x)]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
导数也叫导函数值,又名微商,是微积分中的重要基础概念。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。导数与物理,几何,代数关系密切,在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在深度学习中,可以用于函数进行线性推导的数值叫做导数. 模型学习样本特征的整个过程就是在自动求导.多么简单,而美妙的理解.不要在意那些细节
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询