1个回答
展开全部
x^2+2x+3= (x+1)^2 + 2
let
x+1 =√2tanu
dx=√2(secu)^2 du
-------------------
∫(3x+2)/√(x^2+2x+3) dx
=(3/2)∫(2x+2)/√(x^2+2x+3) dx -∫dx/√(x^2+2x+3)
=3√(x^2+2x+3) -∫dx/√(x^2+2x+3)
=3√(x^2+2x+3) -∫√2(secu)^2 du/[√2(secu)]
=3√(x^2+2x+3) -∫secu du
=3√(x^2+2x+3) -ln|secu+tanu| +C'
=3√(x^2+2x+3) -ln|√(x^2+2x+3)/√2+(x+1)/√2| +C'
=3√(x^2+2x+3) -ln|√(x^2+2x+3)+(x+1)| +C
let
x+1 =√2tanu
dx=√2(secu)^2 du
-------------------
∫(3x+2)/√(x^2+2x+3) dx
=(3/2)∫(2x+2)/√(x^2+2x+3) dx -∫dx/√(x^2+2x+3)
=3√(x^2+2x+3) -∫dx/√(x^2+2x+3)
=3√(x^2+2x+3) -∫√2(secu)^2 du/[√2(secu)]
=3√(x^2+2x+3) -∫secu du
=3√(x^2+2x+3) -ln|secu+tanu| +C'
=3√(x^2+2x+3) -ln|√(x^2+2x+3)/√2+(x+1)/√2| +C'
=3√(x^2+2x+3) -ln|√(x^2+2x+3)+(x+1)| +C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询