展开全部
J10=∫(0,π) -xsin^9xd(cosx)
=-xsin^9xcosx|(0,π)+∫(0,π) cosxd(xsin^9x)
=∫(0,π) cosx(sin^9x+9xsin^8xcosx)dx
=∫(0,π) cosxsin^9xdx+9∫(0,π) xsin^8xcos^2xdx
=∫(0,π) sin^9xd(sinx)+9∫(0,π) xsin^8x(1-sin^2x)dx
=(1/10)*sin^10x|(0,π)+9∫(0,π) xsin^8xdx-9∫(0,π) xsin^10xdx
=9*J8-9*J10
J10=(9/10)*J8
同理,可得J8=(7/8)*J6,J6=(5/6)*J4,J4=(3/4)*J2,J2=(1/2)*J0
所以J10=(9/10)*(7/8)*(5/6)*(3/4)*(1/2)*J0
=(9/10)*(7/8)*(5/6)*(3/4)*(1/2)*∫(0,π) xdx
=(9/10)*(7/8)*(5/6)*(3/4)*(1/2)*(x^2)/2|(0,π)
=(9/10)*(7/8)*(5/6)*(3/4)*(1/2)*(π^2)/4
=-xsin^9xcosx|(0,π)+∫(0,π) cosxd(xsin^9x)
=∫(0,π) cosx(sin^9x+9xsin^8xcosx)dx
=∫(0,π) cosxsin^9xdx+9∫(0,π) xsin^8xcos^2xdx
=∫(0,π) sin^9xd(sinx)+9∫(0,π) xsin^8x(1-sin^2x)dx
=(1/10)*sin^10x|(0,π)+9∫(0,π) xsin^8xdx-9∫(0,π) xsin^10xdx
=9*J8-9*J10
J10=(9/10)*J8
同理,可得J8=(7/8)*J6,J6=(5/6)*J4,J4=(3/4)*J2,J2=(1/2)*J0
所以J10=(9/10)*(7/8)*(5/6)*(3/4)*(1/2)*J0
=(9/10)*(7/8)*(5/6)*(3/4)*(1/2)*∫(0,π) xdx
=(9/10)*(7/8)*(5/6)*(3/4)*(1/2)*(x^2)/2|(0,π)
=(9/10)*(7/8)*(5/6)*(3/4)*(1/2)*(π^2)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询