如何判断反常积分的收敛性
2个回答
展开全部
(A) ∫<-∞, -1> dx/x^(1/3) = (3/2)[x^(2/3)] <-∞, -1> = -∞, 发散;
(B) ∫<1, +∞> dx/x^4 = (-1/3)[1/x^3]<1, +∞> = 1/3, 收敛;
(C) ∫<2, +∞> dx/[x(lnx)^2] = ∫<2, +∞> dlnx/(lnx)^2= - [1/lnx]<2, +∞> = 1/ln2, 收敛;
(D) ∫<0, 1> xdx/√(1-x^2) = (-1/2)∫<0, 1> d(1-x^2)x/√(1-x^2)
= - [√(1-x^2)]<0, 1> = 1, 收敛;
(E) ∫<1, 2> xdx/√(x-1) = 2∫<1, 2> xd√(x-1)
= 2[x√(x-1)]<1, 2> - 2∫<1, 2>√(x-1)dx
= 4 - 2[(2/3)(x-1)^(3/2)]<1, 2> = 4 - 4/3 = 8/3, 收敛;
(F) ∫<0, 2> dx/(x-1)^2 = ∫<0, 1> dx/(x-1)^2 + ∫<1, 2> dx/(x-1)^2
= - [1/(x-1)]<0, 1> - [1/(x-1)]<1, 2> , 发散。
(B) ∫<1, +∞> dx/x^4 = (-1/3)[1/x^3]<1, +∞> = 1/3, 收敛;
(C) ∫<2, +∞> dx/[x(lnx)^2] = ∫<2, +∞> dlnx/(lnx)^2= - [1/lnx]<2, +∞> = 1/ln2, 收敛;
(D) ∫<0, 1> xdx/√(1-x^2) = (-1/2)∫<0, 1> d(1-x^2)x/√(1-x^2)
= - [√(1-x^2)]<0, 1> = 1, 收敛;
(E) ∫<1, 2> xdx/√(x-1) = 2∫<1, 2> xd√(x-1)
= 2[x√(x-1)]<1, 2> - 2∫<1, 2>√(x-1)dx
= 4 - 2[(2/3)(x-1)^(3/2)]<1, 2> = 4 - 4/3 = 8/3, 收敛;
(F) ∫<0, 2> dx/(x-1)^2 = ∫<0, 1> dx/(x-1)^2 + ∫<1, 2> dx/(x-1)^2
= - [1/(x-1)]<0, 1> - [1/(x-1)]<1, 2> , 发散。
追问
它这全是计算出结果来判断,我是说其他方法
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询