1、将被开立方数的整数部分从个位起向左每三位分为一组;
2、根据最左边一组,求得立方根的最高位数;
3、用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
4、用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
5、用同样方法继续进行下去。
立方根定义:如果x³=a,则x叫做a的立方根,记作“³√a”(a称为被开方数)。
立方根的结果有3个(除0以外,且在复数范围内),3个立方根均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
扩展资料
相关应用:
1、 已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.
解析:根据平方根、立方根的定义和已知条件可知x-2=4,2x+y+7=27,从而解出x,y,最后代入x2+y2,求其算术平方根即可.
解:∵x-2的平方根是±2,∴x-2=4,∴x=6.∵2x+y+7的立方根是3,∴2x+y+7=27.把x=6代入解得y=8,∴x2+y2=62+82=100.∴x2+y2的算术平方根为10.
方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x,y的值,再根据算术平方根的定义求出x2+y2的算术平方根。
参考资料来源:百度百科-立方根
2. 根据最左边一组,求得立方根的最高位数;
3. 用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
4. 用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
5. 用同样方法继续进行下去
如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。也就是说,如果
( ),读作“三次根号a”,其中,a叫做被开方数,3叫做根指数。
开立方:求一个数a的立方根的运算叫做开立方。
性质:
(1)在实数范围内,任何实数的立方根只有一个
(2)在实数范围内,负数不能开平方,但可以开立方。
(3)0的立方根是0
(4)立方和开立方运算,互为逆运算。
(5)在复数范围内,任何非0的数都有且仅有3个立方根(一实根,二共轭虚根),它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
(6)在复数范围内,负数既可以开平方,又可以开立方。
扩展资料
平方根与立方根的联系与区别如下:
(1)定义不同
平方根:如果一个数的平方等于 a,那么这个数就叫 a 的平方根或二次方根.即如果 ,那么 x 就叫 a 的平方根;立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根或三次方根.即如果,那么 x 叫做 a 的立方根。
(2)表示方法不同
平方根用“ ”表示,根指数 2 可以省略;算术平方根用“ ”表示,根指数 2 可以省略;立方根用“ ”表示,根指数 3 不能略去,更不能写成“ ”
(3)存在的条件不同
a 有平方根的条件: ,因为正数、零、负数的平方都不是负数,故负数没有平方根和算术平方根;a 有立方根的条件:a 为全体实数,即正数、负数、零均可。
(4)结果不同
平方根的结果除0之外,有两个互为相反的结果;立方根的结果有3个(除0以外,且在复数范围内),3个立方根均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
参考资料:百度百科-立方根