质数有哪些?

 我来答
科院小百科
2018-12-09 · 科院小百科团队,欢迎大家加入!
科院小百科
采纳数:157 获赞数:290863

向TA提问 私信TA
展开全部

质数有无限个。素数及伪素数通项公式

把质数拓展到实数那么它的切线为: 由切线方程知,素数永远在斜率3的折线上摆动,最大斜率3+  ,最小斜率3。

以下15个区间内质数和孪生质数的统计数。

S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)

S2区间73——216,有素数27个,孪生素数7对。

S3区间217——432,有素数36个,孪生素数8对。

S4区间433——720,有素数45个,孪生素数7对。

S5区间721——1080,有素数52个,孪生素数8对。

S6区间1081——1512,素数60个,孪生素数9对。

S7区间1513——2016,素数65个,孪生素数11对。

S8区间2017——2592,素数72个,孪生素数12对。

S9区间2593——3240,素数80个,孪生素数10对。

S10区间3241——3960,素数91个,孪生素数19对。

扩展资料:

质数的应用:

质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。

在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。

以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。

多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。

参考资料:百度百科-质数

帐号已注销
2018-12-21 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.4万
展开全部

100以内的质数共有25个。分别是:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,  是素数或者不是素数。

如果  为素数,则  

要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

扩展资料:

质数具有许多独特的性质:

(1)质数p的约数只有两个:1和p。

(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。

(3)质数的个数是无限的。

(4)质数的个数公式  是不减函数。

(5)若n为正整数,在  到  之间至少有一个质数。

(6)若n为大于或等于2的正整数,在n到  之间至少有一个质数。

(7)若质数p为不超过n(  )的最大质数,则  。

(8)所有大于10的质数中,个位数只有1,3,7,9。

尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数。”,“一个随机的100位数多大可能是素数。”。素数定理可以回答此问题。

1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。

2、存在任意长度的素数等差数列。

3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)

4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)

5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)

6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2) 

参考资料:百度百科——质数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
学屋舍
2018-04-29 · TA获得超过5013个赞
知道小有建树答主
回答量:8434
采纳率:100%
帮助的人:158万
展开全部

素数就是质数   质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。

换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,

 

是素数或者不是素数。

如果

 

为素数,则

 

要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
世青易牛跃
2020-03-22 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:28%
帮助的人:828万
展开全部
除了1和本身外,不能被其他任何自然数整数的自然数。又叫做素数,最小的素数是2,也是唯一的偶质数
100以内的质数共有25个,这些质数我们经常用到,可以用下面的两种办法记住它们。
?
一、规律记忆法
?
首先记住2和3,而2和3两个质数的乘积为6。100以内的质数,一般都在6的倍数前、后的位置上。如5、7、11、13、19、23、29、31、37、41、43……只有25、35、49、55、65、77、85、91、95这几个6的倍数前后位置上的数不是质数,而这几个数都是5或7的倍数。由此可知:100以内6的倍数前、后位置上的两个数,只要不是5或7的倍数,就一定是质数。根据这个特点可以记住100以内的质数。
?
二、分类记忆法
?
我们可以把100以内的质数分为五类记忆。
?第一类:20以内的质数,共8个:2、3、5、7、11、13、17、19。
?第二类:个位数字是3或9,十位数字相差3的质数,共6个:23、29、53、59、83、89。
?第三类:个位数字是1或7,十位数字相差3的质数,共4个:31、37、61、67。
?第四类:个位数字是1、3或7,十位数字相差3的质数,共5个:41、43、47、71、73。
?第五类:还有2个持数是79和97。
?
一种简便的试商方法
?
试商是计算除数是三位数除法的关键,当除数接近整百数时,可以用“四舍五入法”来试商,然而当除数十位上是4、5、6不接近整百数时,试商就比较困难,有时需要多次调商。为了帮助同学们解决这个困难,下面介绍一种简便的试商方法。
?
当除数十位上是4时,舍去尾数看做整百数。用整百数做除数得出的商减1后去试商。
?
命名如1944÷243,除数十位上是4,把243看做200,1944÷200商9,用8(9-1)去试商正合适。
?
当除数十位上是5、6时,舍去尾数向百位进1,把除数看做整百数,用整百数做除数得出的商加1后去试商。
?
例如:1524÷254除数十位上是5,把254看做300,1524÷300商5,用6(5+1)去试商正合适。
?
运用上面这种试商方法,有的可以直接得出准确商,有的只需调商一次就行了。同学们不试在计算除法时试一试。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
渠菲q9
2021-03-31
知道答主
回答量:3
采纳率:0%
帮助的人:1476
展开全部
100以内的质数共有25个。分别是:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,

是素数或者不是素数。

如果

为素数,则

要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

扩展资料:

质数具有许多独特的性质:

(1)质数p的约数只有两个:1和p。

(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。

(3)质数的个数是无限的。

(4)质数的个数公式

是不减函数。

(5)若n为正整数,在



之间至少有一个质数。

(6)若n为大于或等于2的正整数,在n到

之间至少有一个质数。

(7)若质数p为不超过n(

)的最大质数,则



(8)所有大于10的质数中,个位数只有1,3,7,9。

尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数。”,“一个随机的100位数多大可能是素数。”。素数定理可以回答此问题。

1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。

2、存在任意长度的素数等差数列。

3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)

4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)

5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)

6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(14)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式