什么叫线性相关,什么叫线性无关

多举几个例子... 多举几个例子 展开
 我来答
爱做作业的学生
高粉答主

2018-12-20 · 说的都是干货,快来关注
知道小有建树答主
回答量:161
采纳率:100%
帮助的人:4.8万
展开全部

线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。

例子:

有向量组 a1,a2,a3,如果存在一组不全为零的数k1,k2,k3,使得k1*a1 + k2*a2 +k3*a3 = 0

那么,这三个向量是线性相关的。如果只有k1=k2=k3=0时,上面这个等式才成立,那么这三个向量就是线性无关的。

如果这三个向量线性相关,那么它们在同一个平面上。

同理,如果是两个向量线性相关,那么它们在同一直线上。

扩展资料

1、对于任一向量组而言,不是线性无关的就是线性相关的。

2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。

3、包含零向量的任何向量组是线性相关的。

4、含有相同向量的向量组必定线性相关。

5、增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)

6、减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)

参考资料:百度百科——线性相关



瑞地测控
2024-08-12 广告
在苏州瑞地测控技术有限公司,我们深知频率同步与相位同步的重要性。频率同步确保两个或多个设备的时钟频率变化一致,但相位(即时间点)可保持相对固定差值。而相位同步,即时间同步,要求不仅频率一致,相位也必须完全一致,即时间差恒定为零。相位同步的精... 点击进入详情页
本回答由瑞地测控提供
188月亮
2018-05-01 · TA获得超过2180个赞
知道答主
回答量:122
采纳率:0%
帮助的人:5.8万
展开全部

1、在线性代数里,向量空间的一组元素如果其中没有向量可表示成有限个其他向量的线性组合称为线性无关,反之称为线性相关。

2、例如在三维欧几里得空间R3的三个向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, 1, 1),(1, 0, 1)和(3, 1, 2)线性相关,因为第三个是前两个的和。

3、在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立[1]  (linearly independent),反之称为线性相关(linearly dependent)。

如何理解矩阵的线性相关和无关?

1、线性相关性与向量的线性表示有关,刻画线性相关的定理: 向量组线性相关的充要条件是至少有一个向量可由其余向量线性表示。

2、 线性相关的向量组中有"多余"的向量, "多余"是指它可由其余向量表示,而向量组的极大无关组(线性无关)就可理解为向量组精减后的代表。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1路边的星星
2019-09-06
知道答主
回答量:20
采纳率:0%
帮助的人:5697
展开全部
我是这样理解的:比如说,三维直角坐标系中的基底i,j,k(夹角互为90°),假设向量m=xi+yj+zk,m可以等于任意值,也就是该空间的任意向量,即i,j,k可以表示空间的所有向量,这里的i,j,k就是线性无关。

相应的,任意三个向量a,b,c(全不等于0)不共面即可表示出三维空间的所有向量,称a,b,c线性无关;
如果向量a,b,c共面,则不能表示出整个空间,称a,b,c线性相关。

同样的,在二维平面(平面直角坐标系)中情况类似,向量a和b共线,即a=mb也就是a+nb=0(m=-n∈R)(三维以及n维也可以这样表示出来),这里a和b就是线性相关;否则就是线性无关。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
szyczxzh
2018-04-30 · TA获得超过2238个赞
知道小有建树答主
回答量:1036
采纳率:76%
帮助的人:333万
展开全部
比如有三个数a,b,c
如果存在不全为0的三个数m,n,k
使得ma+nb+kc=0
就说a,b,c线性相关 否则若只有当m=n=k=0时成立,则它们线性无关
其实a,b,c代表的东西很多,不一定就是数字,也可以是向量啊,等等
数量也不一定是三个,在这只是举个例子,也可以是无限多个
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式