圆的面积怎么算?为什么?

 我来答
亦是如此
高粉答主

2021-06-25 · 往前看,不要回头。
亦是如此
采纳数:6379 获赞数:544372

向TA提问 私信TA
展开全部

圆的面积公式为:S=πr²,S=π(d/2)²,(d为直径,r为半径,π是圆周率,通常取3.14)圆面积公式的是由古代数学家不断推导出来的。

我国古代的数学家祖冲之,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。

古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。

古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。

16世纪的德国天文学家开普勒,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形。圆面积等于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。

与圆相关的公式:

1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。

2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。

3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。

4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。

5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)

6、扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)

7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)

于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。

星运贺拨Dy
高能答主

推荐于2019-10-17 · 答题姿势总跟别人不同
知道大有可为答主
回答量:4.8万
采纳率:100%
帮助的人:1266万
展开全部

圆的面积=3.14×半径×半径
圆的周长=3.14×直径=3.14×半径×2

圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合。这个给定的点称为圆的圆心。作为定值的距离称为圆的半径。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹就是一个圆。圆的直径有无数条;圆的对称轴有无数条。圆的直径是半径的2倍,圆的半径是直径的一半。

用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,半径的长度就是圆规两个角之间的距离。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

圆是平面上的曲线图形,是一个轴对称图形,它的对称轴是直径所在的直线,圆有无数条对称轴。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
年翠花针妍
2020-02-27 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:32%
帮助的人:1001万
展开全部
圆的面积公式为:S=πr²,S=π(d/2)²,(d为直径,r为半径,π是圆周率,通常取3.14),圆面积公式的是由古代数学家不断推导出来的。
我国古代的数学家祖冲之,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。
古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。
古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。
16世纪的德国天文学家开普勒,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形。圆面积等于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。
扩展资料
与圆相关的公式:
1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
5、扇形弧长L=圆心角(弧度制)×R=
nπR/180(θ为圆心角)(R为扇形半径)
6、扇形面积S=nπ
R²/360=LR/2(L为扇形的弧长)
7、圆锥底面半径
r=nR/360(r为底面半径)(n为圆心角)
于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
求付友佟词
2019-11-08 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:32%
帮助的人:997万
展开全部
圆形面积
圆的半径:r
直径:d
圆周率:π(数值为3.1415926至3.1415927之间……无限不循环小数),通常采用3.14作为π的数值
圆面积:S=πr²;
S=π(d/2)²
半圆的面积:S半圆=(πr^2;)/2
圆环面积:
S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)
圆的周长:C=2πr或c=πd
半圆的周长:d+(πd)/2或者d+πr[1]
来源故事
约翰尼斯·开普勒是德国天文学家,他发现了行星运动的三大定律,这
开普勒
三大定律可分别描述为:所有行星分别是在大小不同的椭圆轨道上运行;在同样的时间里行星向径在轨道平面上所扫过的面积相等;行星公转周期的平方与它同太阳距离的立方成正比。这三大定律最终使他赢得了“天空立法者”的美名。为哥白尼的日心说提供了最可靠的证据,同时他对光学、数学也做出了重要的贡献,他是现代实验光学的奠基人。
开普勒当过数学老师,他对求面积的问题非常感兴趣,曾进行过深入的研究。他想,古代数学家用分割的方法去求圆面积,所得到的结果都是近似值。为了提高近似程度,他们不断地增加分割的次数。但是,不管分割多少次,几千几万次,只要是有限次,所求出来的总是圆面积的近似值。要想求出圆面积的精确值,必须分割无穷多次,把圆分成无穷多等分才行。
开普勒也仿照切西瓜的方法,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形。
 圆面积等于无穷多个小扇形面积的和,所以
 在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有
 这就是我们所熟悉的圆面积公式。
开普勒运用无穷分割法,求出了许多图形的面积。1615年,他将自己创造的这种求圆面积的新方法,发表在《葡萄酒桶的立体几何》一书中。
开普勒大胆地把圆分割成无穷多个小扇形,并果敢地断言:无穷小的扇形面积,和它对应的无穷小的三角形面积相等。他在前人求圆面积的基础上,向前迈出了重要的一步。
《葡萄酒桶的立体几何》一书,很快在欧洲流传开了。数学家们高度评价开普勒的工作,称赞这本书是人们创造求圆面积和体积新方法的灵感源泉。[2]
公式推导
圆面积公式
把圆平均分成若干份,可以拼成一个近似的长方形。长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)的平方乘以周长C,S=πr*r。
圆周长公式
圆周长(C):圆的直径(d),那圆的周长(C)除以圆的直径(d)等于π,那利用乘法的意义,就等于
π乘以圆的直径(d)等于圆的周长(C),C=πd。而同圆的直径(d)是圆的半径(r)的两倍,所以就圆的周长(C)等于2乘以π乘以圆的半径(r),C=2πr。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
汗晚竹红鸾
2019-04-20 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:25%
帮助的人:858万
展开全部
圆面积:S=πr,S=π(d/2),(d为直径,r为半径,π是圆周率,通常取3.14),圆面积公式的是由古代数学家不断推导出来的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(10)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式