0的阶乘为什么等于1

 我来答
白雪忘冬
高粉答主

推荐于2020-06-04 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376619

向TA提问 私信TA
展开全部

从阶乘的定义出发。从阶乘表达式n!=n×(n-1)!中,知道一个数的阶乘是递推定义的。比如要计算一个任意的整数m的阶乘,我们就把m作为初值,计算m!=m×(m-1)!。

同样的,当m=l时,m!=1!=1×0!=1,取等式中最后一个等号的两边,即1×0!=1,这个等式两边同时约去1,就得到如下结果:0!=1。

阶乘的计算方法是1乘以2乘以3乘以4,一直乘到所要求的数。例如所要求的数是6,则阶乘式是1×2×3×…×6,得到的积是720,720就是6的阶乘。

如果所要求的数是n,则阶乘式是1×2×3×…×n,设得到的积是x,x就是n的阶乘。任何大于1的自然数n的阶乘的表示方法是:n!=1×2×3×……×n或n!=n×(n-1)!。

扩展资料

双阶乘:

双阶乘用“m!!”表示。当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如:

当 m 是负奇数时,表示绝对值小于它的绝对值的所有负奇数的绝对值积的倒数。

当 m 是负偶数时,m!!不存在。

自然数双阶乘比的极限:

参考资料来源:百度百科-阶乘

小小芝麻大大梦
高粉答主

2019-03-26 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:982万
展开全部

0的阶乘为1。0的阶乘等于1是人为规定的。

原因具体如下:

一个正整数的阶乘是所有小于及等于该数的正整数的积,并且有0的阶乘为1。简单一点是认为规定的,但它是有道理的,因为阶乘是一个递推定义,n!=n*(n-1)!,那么必然有一个初值需要人为规定。

因为1!=1,根据1!=1*0!,所以0!=1而不是0。

扩展资料:

阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。

一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。

双阶乘用“m!!”表示。

当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如:

当 m 是负奇数时,表示绝对值小于它的绝对值的所有负奇数的绝对值积的倒数。

当 m 是负偶数时,m!!不存在。

参考资料来源:百度百科-阶乘

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
159357asdsky
推荐于2019-08-27 · TA获得超过6458个赞
知道小有建树答主
回答量:130
采纳率:70%
帮助的人:6.4万
展开全部

1的阶乘是1,这个好理解吧。

(n+1)的阶乘是n的阶乘乘以(n+1),也就是说(n-1)的阶乘是n的阶乘除以n,那么取n=1,就得到0的阶乘等于1。

数学上的一些东西只是工具,你定义他是啥就是啥,你也可以说0!=0,也不影响各种数学推理,大不了注明下0!=0,的特殊情况。

就好像pi取为周长比直径=3.14,不取为周长比半径=6.28,不就是当时为了方便嘛,你也可以换成6.28,各个公式也都成立,不过是除个2而已。

我还是高中的时候特别纠结这种东西,上了大学后接触到就明白了,包括很多学科现在都还有层出不穷的成果:代码、算法,等等等等,实际上最先定义(或发现)的人也就是出于自己的习惯或者使用方便,能解决实际问题就行,像这种根本不本质的问题就没意义纠结了。

这个定义跟pi与2pi之争还不是一回事,它的定义是有道理的。

我们可以这样说。lz想一下,如果要写一段算n!的程序,应该怎么写。是不是这样:


f = 1


for i = 1 to n {f = f * i}


好,那么如果n = 0,运行的结果是什么呢?是1吧!所以就定义0! = 1了。

简单地说,规定0! = 1的理由是“乘法的出发点是1”。同样,加法的出发点是0。比如我要定义一种“阶加”运算,n$ = 1 + 2 + ... + n,那么0$应该等于0,也是比较容易理解的。

再如,我们可以对一个有限数集A定义其所有元素的和A$及其所有元素的积A!。如果A是空集怎么办呢?有了上面的讨论,就会发现A$ = 0和A! = 1是最合理的定义。

一般的书不想在这个细节上多费口舌,所以就说“规定”了,但这个“规定”是有道理的。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
姓王的wy451

2017-12-29 · TA获得超过48.3万个赞
知道大有可为答主
回答量:8万
采纳率:78%
帮助的人:8915万
展开全部
这是直接认定的,因为阶乘是一个递推定义,n!=n*(n-1)!
那么必然有一个初值需要人为规定。我们知道1!=1,根据1!=1*0!
所以推算出 0!=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-12-29
展开全部
这个是认为规定的:
因为阶乘是一个递推定义,
n!=n*(n-1)!,那么必然有一个初值需要人为规定。
我们知道1!=1,
根据1!=1*0!,
所以0!=1而不是0。
比如:1的阶乘是1,这个好理解吧。 (n+1)的阶乘是n的阶乘乘以(n+1),也就是说(n-1)的阶乘是n的阶乘除以n,那么取n=1,就得到0的阶乘等于1。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(14)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式