微积分有什么用?
5个回答
2019-01-17
展开全部
解决问题的思路就不一样了,分治
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。
微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-07-25
展开全部
微积分的用途
从事基础工科研究和实验的工作者,在建筑行业、航空行业,等等,
很多地方用到微积分,比如设计院,航空实验,等等,
如果不是基础工科的从业者,微积分用处不大,现在经济学也像模像样抵用起了微积分,
搞篇论文不出现点微积分没水平没面子,
尤其是金融分支,主要涉及金融产品定价的问题,比如保险费的厘定,衍生品固定收益品定价,风险的量化,等等,都需要概率随机微积分,
但这也是少数精算师的工作,一般金融工作者也用不着微积分,金融机构少数几个人就可以完成定价,剩下的就是对市场的预测进行买卖了。
从事基础工科研究和实验的工作者,在建筑行业、航空行业,等等,
很多地方用到微积分,比如设计院,航空实验,等等,
如果不是基础工科的从业者,微积分用处不大,现在经济学也像模像样抵用起了微积分,
搞篇论文不出现点微积分没水平没面子,
尤其是金融分支,主要涉及金融产品定价的问题,比如保险费的厘定,衍生品固定收益品定价,风险的量化,等等,都需要概率随机微积分,
但这也是少数精算师的工作,一般金融工作者也用不着微积分,金融机构少数几个人就可以完成定价,剩下的就是对市场的预测进行买卖了。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询