5个回答
展开全部
x^2+x+1 = x^2+x+1/4 + 3/4 = (x+1/2)^2 + (√3/2)^2 = u^2+a^2
其中 u = x+1/2, a = √3/2, 则(红线处)
∫dx/(x^2+x+1)^2 = ∫du/(u^2+a^2)^2
= [1/(2a^2)]∫(a^2-u^2+u^2+a^2)du/(u^2+a^2)^2
= [1/(2a^2)][∫(a^2-u^2)du/(u^2+a^2)^2 + ∫du/(u^2+a^2)]
(前项被积函数凑微分, 看不出来时从下行求导处验证)
= [1/(2a^2)]{∫[u/(u^2+a^2)]'du + ∫du/(u^2+a^2)}
= [1/(2a^2)][u/(u^2+a^2) + ∫du/(u^2+a^2)]
其中 u = x+1/2, a = √3/2, 则(红线处)
∫dx/(x^2+x+1)^2 = ∫du/(u^2+a^2)^2
= [1/(2a^2)]∫(a^2-u^2+u^2+a^2)du/(u^2+a^2)^2
= [1/(2a^2)][∫(a^2-u^2)du/(u^2+a^2)^2 + ∫du/(u^2+a^2)]
(前项被积函数凑微分, 看不出来时从下行求导处验证)
= [1/(2a^2)]{∫[u/(u^2+a^2)]'du + ∫du/(u^2+a^2)}
= [1/(2a^2)][u/(u^2+a^2) + ∫du/(u^2+a^2)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询