展开全部
教材上或者习题中应该有极坐标下的旋转体的体积计算公式(或可自己推导),依样画葫芦就是。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(x^2+1)/[(x^2-1)(x+1)]
=1/(x+1) + 2/[(x^2-1)(x+1)]
let
2/[(x^2-1)(x+1)]≡ A/(x+1) +B/(x+1)^2 + C/(x-1)
=>
2 ≡ A(x+1)(x-1) +B(x-1) + C(x+1)^2
x=1, C=1/2
x=-1, B=-1
coef. of x^2
A+C =0
A= -1/2
2/[(x^2-1)(x+1)]≡ -(1/2)[1/(x+1)] -1/(x+1)^2 + (1/2)[1/(x-1)]
(x^2+1)/[(x^2-1)(x+1)] ≡ (1/2)[1/(x+1)] -1/(x+1)^2 + (1/2)[1/(x-1)]
∫(x^2+1)/[(x^2-1)(x+1)] dx
=∫ { (1/2)[1/(x+1)] -1/(x+1)^2 + (1/2)[1/(x-1)] } dx
=(1/2)ln|x^2-1| +1/(x+1) + C
=1/(x+1) + 2/[(x^2-1)(x+1)]
let
2/[(x^2-1)(x+1)]≡ A/(x+1) +B/(x+1)^2 + C/(x-1)
=>
2 ≡ A(x+1)(x-1) +B(x-1) + C(x+1)^2
x=1, C=1/2
x=-1, B=-1
coef. of x^2
A+C =0
A= -1/2
2/[(x^2-1)(x+1)]≡ -(1/2)[1/(x+1)] -1/(x+1)^2 + (1/2)[1/(x-1)]
(x^2+1)/[(x^2-1)(x+1)] ≡ (1/2)[1/(x+1)] -1/(x+1)^2 + (1/2)[1/(x-1)]
∫(x^2+1)/[(x^2-1)(x+1)] dx
=∫ { (1/2)[1/(x+1)] -1/(x+1)^2 + (1/2)[1/(x-1)] } dx
=(1/2)ln|x^2-1| +1/(x+1) + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |