6个回答
展开全部
⒈如图一,在锐角△ABC中,CD垂直于AB于点D,E是AB上的一点.找出图中所有的锐角三角形,并说明理由.
图见:
⒉如图二,△ABC中,∠B大与∠C,AD是∠BAC的平分线,说明∠ADB-∠ADC=∠C-∠B成立的理由. 图见:
⒊如图三,已知BO平分∠CBA,CO平分∠ACB,MN‖BC,AB=12,AC=18,求△AMN的周长. 图见:
⒋如图四,已知稿明△ABC中,AD是BC边上的高线,AE是∠BAC的平分线,若设∠EAD=a,求∠C-∠B.(用a的代数式表示) 图见:
⒌如图五,已知AB=AC,AD=AE,∠1=∠2,问CE=BD吗?说明理由. 图见:
⒍如图六,由正方形ABCD边BC、CD向外作等边三角形BCE和CDF,连结AE、AF、EF,求证:△AEF为等边三角形。 图见:
第一题: 图一中共有三角形6个,为△ABC,△AEC,△CED,△CBD,△ACD,△ECB 其中△CED,△ACD,△CDB为绝敬搭Rt△ △AEC为钝角△,因为∠AEC=∠ADC+∠ECD=90°+∠ECD>90° △ABC锐角△,已知条件。 ∠CEB = 180°-钝角=锐角 ∠B为锐角, ∠ECB=∠ACB-∠ACE =锐角 △ECB为锐角△ 共有两个锐角△,为△ECB和△ACB 第二题: ∵AD是∠BAC的平分线 ∴∠BAD=∠DAC ∵三角形内角和为180° ∴∠BAD+∠B+∠ADB=∠DAC+∠ADC+∠C ∴∠B+∠ADB=∠ADC+∠C ∴∠ADB-∠ADC=∠C-∠B 第三题 ∵MN‖BC ∴∠MOB=∠OBC ∴∠NOC=∠OCB ∵BO平分∠CBA ∴∠MBO=∠OBC ∵CO平分∠ACB ∴∠NCO=∠OCB ∴∠MOB=∠MBO ∴∠NCO=∠OCB ∵∠MOB=∠MBO ∴BM=OM ∵∠NCO=∠OCB ∴并拿ON=NC ∴AM+MN+NA = (AM+BM)+(AN+CN)=AB+AC=12+18=30 ∵△AMN的周长 = 30 第四题 ∠C=90°-∠DAC = 90°-[(1/2)∠BAC-a] ∠B=∠AEC-∠BAE = 90°- a-∠BAE = 90°- a-(1/2)∠BAC ∠C-∠B =90°-[(1/2)∠BAC-a]-{90°- a-(1/2)∠BAC} =2a 第六题 ∵正方形ABCD ∴AB=AD=BC=CD ∵△CDF和△BCE为等边△ ∵FD=DC, ∴BE=AB, ∴FD=BE ∵∠ADF=∠ADC+∠FDC=90+60=150 ∵∠ABE=∠ABC+∠CBE=90+60=150 ∴∠DFA=∠DAF=∠BAE=∠BEA=15 ∴∠ADF=∠ABE ∴△ADF≌△ABE ∴AF=AE ∴△AFE为等腰三角形 ∵∠FAE = ∠DAB-∠DAF-∠EAB =90°-15°-15°=60° ∴△AFE为等边三角形
⒉如图二,△ABC中,∠B大与∠C,AD是∠BAC的平分线,说明∠ADB-∠ADC=∠C-∠B成立的理由. 图见:
⒊如图三,已知BO平分∠CBA,CO平分∠ACB,MN‖BC,AB=12,AC=18,求△AMN的周长. 图见:
⒋如图四,已知稿明△ABC中,AD是BC边上的高线,AE是∠BAC的平分线,若设∠EAD=a,求∠C-∠B.(用a的代数式表示) 图见:
⒌如图五,已知AB=AC,AD=AE,∠1=∠2,问CE=BD吗?说明理由. 图见:
⒍如图六,由正方形ABCD边BC、CD向外作等边三角形BCE和CDF,连结AE、AF、EF,求证:△AEF为等边三角形。 图见:
第一题: 图一中共有三角形6个,为△ABC,△AEC,△CED,△CBD,△ACD,△ECB 其中△CED,△ACD,△CDB为绝敬搭Rt△ △AEC为钝角△,因为∠AEC=∠ADC+∠ECD=90°+∠ECD>90° △ABC锐角△,已知条件。 ∠CEB = 180°-钝角=锐角 ∠B为锐角, ∠ECB=∠ACB-∠ACE =锐角 △ECB为锐角△ 共有两个锐角△,为△ECB和△ACB 第二题: ∵AD是∠BAC的平分线 ∴∠BAD=∠DAC ∵三角形内角和为180° ∴∠BAD+∠B+∠ADB=∠DAC+∠ADC+∠C ∴∠B+∠ADB=∠ADC+∠C ∴∠ADB-∠ADC=∠C-∠B 第三题 ∵MN‖BC ∴∠MOB=∠OBC ∴∠NOC=∠OCB ∵BO平分∠CBA ∴∠MBO=∠OBC ∵CO平分∠ACB ∴∠NCO=∠OCB ∴∠MOB=∠MBO ∴∠NCO=∠OCB ∵∠MOB=∠MBO ∴BM=OM ∵∠NCO=∠OCB ∴并拿ON=NC ∴AM+MN+NA = (AM+BM)+(AN+CN)=AB+AC=12+18=30 ∵△AMN的周长 = 30 第四题 ∠C=90°-∠DAC = 90°-[(1/2)∠BAC-a] ∠B=∠AEC-∠BAE = 90°- a-∠BAE = 90°- a-(1/2)∠BAC ∠C-∠B =90°-[(1/2)∠BAC-a]-{90°- a-(1/2)∠BAC} =2a 第六题 ∵正方形ABCD ∴AB=AD=BC=CD ∵△CDF和△BCE为等边△ ∵FD=DC, ∴BE=AB, ∴FD=BE ∵∠ADF=∠ADC+∠FDC=90+60=150 ∵∠ABE=∠ABC+∠CBE=90+60=150 ∴∠DFA=∠DAF=∠BAE=∠BEA=15 ∴∠ADF=∠ABE ∴△ADF≌△ABE ∴AF=AE ∴△AFE为等腰三角形 ∵∠FAE = ∠DAB-∠DAF-∠EAB =90°-15°-15°=60° ∴△AFE为等边三角形
2010-06-20
展开全部
我也不会
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-06-10
展开全部
83页第6题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询