1个回答
展开全部
选c
这个问题有很多种思考方法。
1、直接利用线性相关性的定义。
令这n+1个向量的组合等于0,得到一个n+1元的齐次线性方程组,由于向量是n维向量,所以该方程组只有n个方程,方程的个数少于未知数的个数,从而方程组有非零解,即存在不全为零的数,使得向量的组合等于0,故向量组线性相关。
2、用向量组的秩来考虑。
向量组线性相关的充要条件是向量组的秩小于向量的个数。
你如果将n+1个n维向量拼成一个矩阵,则该矩阵为一个n行n+1列的矩阵,故矩阵的秩必小于n+1,即向量组的秩小于n+1,小于向量的个数,所以向量组线性相关。
3、还可以从n维向量空间的维数来考虑,n维向量空间中,任意n+1个向量都是线性相关的。
这个问题有很多种思考方法。
1、直接利用线性相关性的定义。
令这n+1个向量的组合等于0,得到一个n+1元的齐次线性方程组,由于向量是n维向量,所以该方程组只有n个方程,方程的个数少于未知数的个数,从而方程组有非零解,即存在不全为零的数,使得向量的组合等于0,故向量组线性相关。
2、用向量组的秩来考虑。
向量组线性相关的充要条件是向量组的秩小于向量的个数。
你如果将n+1个n维向量拼成一个矩阵,则该矩阵为一个n行n+1列的矩阵,故矩阵的秩必小于n+1,即向量组的秩小于n+1,小于向量的个数,所以向量组线性相关。
3、还可以从n维向量空间的维数来考虑,n维向量空间中,任意n+1个向量都是线性相关的。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询