函数的对称性? 10
函数f(x)=lnx+ln(2-x),∴f(2-x)=ln(2-x)+lnx,即f(x)=f(2-x),fx为什么等于f2-x...
函数f(x)=lnx+ln(2-x),∴f(2-x)=ln(2-x)+lnx,即f(x)=f(2-x), fx为什么等于f 2-x
展开
3个回答
展开全部
1)如果一函数关于轴x=T(T为常数)对称,则有f(x)=f(2T-x)或者f(x+T)=f(T-x)。
这个用解析几何来或者用代数来解释都很简单,也可以当作是证明。
一函数关于轴x=T(T为常数)对称,就是说作直线y=Y(Y为f(x)值域内任意常数),与f(x)相交两点A(a,Y)和B(b,Y),与x=T相交于C(T,Y),则C为AB的中点。
可得a=2T-b,或者a+T=T-x。
由直线y=Y在f(x)值域内的任意性,可知f(x)=f(2T-x)或者f(x+T)=f(T-x)。
一函数关于轴x=T(T为常数)对称,取任意一点P(x,f(x)),函数上必存在与其关于x=T的对称的点Q(q,f(q)),即点(T,f(x))为PQ的中点。用中点公式可得q=2T-x,f(q)=f(x),即f(x)=f(2T-x)。由P点的任意性可知该式在定义区成立。
类似的取P(x+T,f(x+T)),同样道理可证明f(x+T)=f(T-x)。
2)若一函数f(x)关于点O(a,b)中心对称,则有f(x)+f(2a-x)=2b或者f(a+x)+f(a-x)=2b。
任取P(x,f(x)),则必定可以在f(x)上找到点Q(q,f(q))且O(a,b)为PQ的中点。
q+x=2a 且f(q)+f(x)=2b,用x表示q,可得f(x)+f(2a-x)=2b。
类似设这个人任意点为P(x+a,f(x+a)),同样方法可得f(a+x)+f(a-x)=2b。
解析几何的方法和代数的方法其实是同一个本质,只是两种不同的叙述方法,只要理解透彻定义,加上一点代数的技巧或解析几何的直观,这类问题是很容易理解和证明的。
这个用解析几何来或者用代数来解释都很简单,也可以当作是证明。
一函数关于轴x=T(T为常数)对称,就是说作直线y=Y(Y为f(x)值域内任意常数),与f(x)相交两点A(a,Y)和B(b,Y),与x=T相交于C(T,Y),则C为AB的中点。
可得a=2T-b,或者a+T=T-x。
由直线y=Y在f(x)值域内的任意性,可知f(x)=f(2T-x)或者f(x+T)=f(T-x)。
一函数关于轴x=T(T为常数)对称,取任意一点P(x,f(x)),函数上必存在与其关于x=T的对称的点Q(q,f(q)),即点(T,f(x))为PQ的中点。用中点公式可得q=2T-x,f(q)=f(x),即f(x)=f(2T-x)。由P点的任意性可知该式在定义区成立。
类似的取P(x+T,f(x+T)),同样道理可证明f(x+T)=f(T-x)。
2)若一函数f(x)关于点O(a,b)中心对称,则有f(x)+f(2a-x)=2b或者f(a+x)+f(a-x)=2b。
任取P(x,f(x)),则必定可以在f(x)上找到点Q(q,f(q))且O(a,b)为PQ的中点。
q+x=2a 且f(q)+f(x)=2b,用x表示q,可得f(x)+f(2a-x)=2b。
类似设这个人任意点为P(x+a,f(x+a)),同样方法可得f(a+x)+f(a-x)=2b。
解析几何的方法和代数的方法其实是同一个本质,只是两种不同的叙述方法,只要理解透彻定义,加上一点代数的技巧或解析几何的直观,这类问题是很容易理解和证明的。
2020-02-23 · 知道合伙人教育行家
关注
展开全部
f(2-x)=ln(2-x)+ln[2-(2-x)]
=ln(2-x)+ln(x)
=ln(x)+ln(2-x)(加法交换律)
=f(x),
所以函数图像关于直线 x=1 对称。
选 C
=ln(2-x)+ln(x)
=ln(x)+ln(2-x)(加法交换律)
=f(x),
所以函数图像关于直线 x=1 对称。
选 C
更多追问追答
追问
ln[2-(2-x)] 是怎么变成 ln(x)的
追答
2-(2-x) 你不会算?
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |