第1题求极限?
1个回答
展开全部
x->0
分子
(1-cosx)^(1/3) = (x^2/2 )^(1/3) + o(x^(2/3) )
e^(sinx ) = e^(x+o(x)) = 1+x +o(x)
e^(sinx) +(1-cosx)^(1/3) = 1+ x + (x^2/2 )^(1/3) + o(x^(2/3))
ln[e^(sinx) +(1-cosx)^(1/3)]
=x + (x^2/2 )^(1/3) +o(x^(2/3))
ln[e^(sinx) +(1-cosx)^(1/3)] -sinx =(x^2/2 )^(1/3) +o(x^(2/3))
分母
1-cosx = (1/2)x^2 +o(x^2)
4.(1-cosx)^(1/3) = 4(x^2/2 )^(1/3) + o(x^(2/3) )
arctan[4.(1-cosx)^(1/3) ] =4(x^2/2 )^(1/3) + o(x^(2/3) )
lim(x->0) { ln[e^(sinx) +(1-cosx)^(1/3)] -sinx }/ arctan[4.(1-cosx)^(1/3)]
=lim(x->0) (x^2/2 )^(1/3) / [4. (x^2/2 )^(1/3)]
=1/4
分子
(1-cosx)^(1/3) = (x^2/2 )^(1/3) + o(x^(2/3) )
e^(sinx ) = e^(x+o(x)) = 1+x +o(x)
e^(sinx) +(1-cosx)^(1/3) = 1+ x + (x^2/2 )^(1/3) + o(x^(2/3))
ln[e^(sinx) +(1-cosx)^(1/3)]
=x + (x^2/2 )^(1/3) +o(x^(2/3))
ln[e^(sinx) +(1-cosx)^(1/3)] -sinx =(x^2/2 )^(1/3) +o(x^(2/3))
分母
1-cosx = (1/2)x^2 +o(x^2)
4.(1-cosx)^(1/3) = 4(x^2/2 )^(1/3) + o(x^(2/3) )
arctan[4.(1-cosx)^(1/3) ] =4(x^2/2 )^(1/3) + o(x^(2/3) )
lim(x->0) { ln[e^(sinx) +(1-cosx)^(1/3)] -sinx }/ arctan[4.(1-cosx)^(1/3)]
=lim(x->0) (x^2/2 )^(1/3) / [4. (x^2/2 )^(1/3)]
=1/4
追问
你解的结果跟我的一样
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询