设f(x)在x=0处连续,且limx->0f(x)-1/x=a(a为常数),求f(0),f'(0)
2个回答
展开全部
∵φ(x)
=∫
1
0
f(xt)dt
令u=xt
.
1
x
∫
x
0
f(u)du,
∴φ′(x)=
f(x)
x
?
∫
x
0
f(u)du
x2
(x≠0),
又由f(x)连续且
lim
x→0
f(x)
x
=a(a为常数),
得:f(0)=0,f′(0)=a,
再在φ(x)
=∫
1
0
f(xt)dt中,令x=0,得:φ(0)=0,
于是,
φ′(0)=
lim
x→0
φ(x)
x
=
lim
x→0
∫
x
0
f(u)du
x2
=
lim
x→0
f(x)
2x
=
a
2
,
从而:
φ′(x)=
f(x)
x
?
∫
x
0
f(u)du
x2
,x≠0
a
2
,x=0
,
又
lim
x→0
φ′(x)=
lim
x→0
[
f(x)
x
?
∫
x
0
f(u)du
x2
]=
lim
x→0
f(x)
x
?
lim
x→0
∫
x
0
f(u)du
x2
=a?
lim
x→0
f(x)
2x
=a?
1
2
a=
a
2
=φ′(0)
∴φ′(x)在x=0处连续
=∫
1
0
f(xt)dt
令u=xt
.
1
x
∫
x
0
f(u)du,
∴φ′(x)=
f(x)
x
?
∫
x
0
f(u)du
x2
(x≠0),
又由f(x)连续且
lim
x→0
f(x)
x
=a(a为常数),
得:f(0)=0,f′(0)=a,
再在φ(x)
=∫
1
0
f(xt)dt中,令x=0,得:φ(0)=0,
于是,
φ′(0)=
lim
x→0
φ(x)
x
=
lim
x→0
∫
x
0
f(u)du
x2
=
lim
x→0
f(x)
2x
=
a
2
,
从而:
φ′(x)=
f(x)
x
?
∫
x
0
f(u)du
x2
,x≠0
a
2
,x=0
,
又
lim
x→0
φ′(x)=
lim
x→0
[
f(x)
x
?
∫
x
0
f(u)du
x2
]=
lim
x→0
f(x)
x
?
lim
x→0
∫
x
0
f(u)du
x2
=a?
lim
x→0
f(x)
2x
=a?
1
2
a=
a
2
=φ′(0)
∴φ′(x)在x=0处连续
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询