高等数学微积分里有几个中值定理啊?详细说明~
2个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数:
两个重要极限:
三角函数公式:
•诱导公式:
函数
角a
sin
cos
tg
ctg
-α
-sinα
cosα
-tgα
-ctgα
90°-α
cosα
sinα
ctgα
tgα
90°+α
cosα
-sinα
-ctgα
-tgα
180°-α
sinα
-cosα
-tgα
-ctgα
180°+α
-sinα
-cosα
tgα
ctgα
270°-α
-cosα
-sinα
ctgα
tgα
270°+α
-cosα
sinα
-ctgα
-tgα
360°-α
-sinα
cosα
-tgα
-ctgα
360°+α
sinα
cosα
tgα
ctgα
•和差角公式:
•和差化积公式:
•倍角公式:
•半角公式:
•正弦定理:
•余弦定理:
•反三角函数性质:
高阶导数公式——莱布尼兹(leibniz)公式:
中值定理与导数应用:
曲率:
定积分的近似计算:
定积分应用相关公式:
空间解析几何和向量代数:
多元函数微分法及应用
微分法在几何上的应用:
方向导数与梯度:
多元函数的极值及其求法:
重积分及其应用:
柱面坐标和球面坐标:
曲线积分:
曲面积分:
高斯公式:
斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为
的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解
两个不相等实根
两个相等实根
一对共轭复根
二阶常系数非齐次线性微分方程
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数:
两个重要极限:
三角函数公式:
•诱导公式:
函数
角a
sin
cos
tg
ctg
-α
-sinα
cosα
-tgα
-ctgα
90°-α
cosα
sinα
ctgα
tgα
90°+α
cosα
-sinα
-ctgα
-tgα
180°-α
sinα
-cosα
-tgα
-ctgα
180°+α
-sinα
-cosα
tgα
ctgα
270°-α
-cosα
-sinα
ctgα
tgα
270°+α
-cosα
sinα
-ctgα
-tgα
360°-α
-sinα
cosα
-tgα
-ctgα
360°+α
sinα
cosα
tgα
ctgα
•和差角公式:
•和差化积公式:
•倍角公式:
•半角公式:
•正弦定理:
•余弦定理:
•反三角函数性质:
高阶导数公式——莱布尼兹(leibniz)公式:
中值定理与导数应用:
曲率:
定积分的近似计算:
定积分应用相关公式:
空间解析几何和向量代数:
多元函数微分法及应用
微分法在几何上的应用:
方向导数与梯度:
多元函数的极值及其求法:
重积分及其应用:
柱面坐标和球面坐标:
曲线积分:
曲面积分:
高斯公式:
斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为
的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解
两个不相等实根
两个相等实根
一对共轭复根
二阶常系数非齐次线性微分方程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |