如图,在△ABC中,∠A=120°,P为△ABC内一点。求证:PA+PB+PC>AB+AC
1个回答
展开全部
已知:三角形ABC中,∠A=120,P为三角形ABC内一点。求证:PA+PB+PC>AB+AC
1
证明:把三角形PAB绕A点顺时针旋转60度得三角形QAD,则D,A,C在同一直线上。
AP=AQ,AB=AD,且角PAQ=角BAD=60
所以,三角形PAQ和三角形BAD均为正三角形。
所以,AP=PQ,AD=AB
由三角形APB全等于三角形AQD知:PB=QD
而DQ+PQ+PC>AD+AC,即:PA+PB+PC>AB+AC
2
据三角形三边关系。
在三角形PAB中恒有AP+PB>AB,同理:AP+PC>AC,PB+PC大>BC。所以2(AP+BP+CP)>AB+AC+BC.又因为角BAC为120度,有角BPC恒大于120度.由余弦定理可判定BP+CP>AB+AC,所以有AP+BP+CP>AB+AC
看看那种和使用哪种,希望能帮到你。。
1
证明:把三角形PAB绕A点顺时针旋转60度得三角形QAD,则D,A,C在同一直线上。
AP=AQ,AB=AD,且角PAQ=角BAD=60
所以,三角形PAQ和三角形BAD均为正三角形。
所以,AP=PQ,AD=AB
由三角形APB全等于三角形AQD知:PB=QD
而DQ+PQ+PC>AD+AC,即:PA+PB+PC>AB+AC
2
据三角形三边关系。
在三角形PAB中恒有AP+PB>AB,同理:AP+PC>AC,PB+PC大>BC。所以2(AP+BP+CP)>AB+AC+BC.又因为角BAC为120度,有角BPC恒大于120度.由余弦定理可判定BP+CP>AB+AC,所以有AP+BP+CP>AB+AC
看看那种和使用哪种,希望能帮到你。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询