三角形中位线定理的证明方法
展开全部
三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.
这个定理的证明方法很多,关键在于如何添加辅助线,当一个命题有多种证明方法时,要选用比较简捷的方法证明
(l)延长DE到F,使
,连结CF,由
可得AD
FC.
(2)延长DE到F,使
,利用对角线互相平分的四边形是平行四边形,可得AD
FC.
(3)过点C作
,与DE延长线交于F,通过证
可得AD
FC.
上面通过三种不同方法得出AD
FC,再由
得BD
FC,所以四边形DBCF是平行四边形,DF
BC,又因DE
,所以DE
这个定理的证明方法很多,关键在于如何添加辅助线,当一个命题有多种证明方法时,要选用比较简捷的方法证明
(l)延长DE到F,使
,连结CF,由
可得AD
FC.
(2)延长DE到F,使
,利用对角线互相平分的四边形是平行四边形,可得AD
FC.
(3)过点C作
,与DE延长线交于F,通过证
可得AD
FC.
上面通过三种不同方法得出AD
FC,再由
得BD
FC,所以四边形DBCF是平行四边形,DF
BC,又因DE
,所以DE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询