用数学归纳法证明:((n+1)/2)^n>n!(n>1,n∈N+)

 我来答
理菱戚元绿
2020-06-24 · TA获得超过1196个赞
知道小有建树答主
回答量:1442
采纳率:100%
帮助的人:6.3万
展开全部
证明:
(1)当n=2时, ((n+1)/2)^n= [(2+1)/2]^2=2.25 n!=2*1=2 所以((n+1)/2)^n> n!成立.
(2)当n>2时, 假设n=k时原式成立,即((K+1)/2)^K> K! 即(k+1)^k/2^k>K! .(1)
则n=k+1时,((K+1+1)/2)^(K+1)=(K+2)^(k+1)/(2*2^K) .(2)
因(K+2)^(k+1)>2(k+1)^(k+1) .(3)
(3)代入(2)
((K+1+1)/2)^(K+1)=(K+2)^(k+1)/(2*2^K)>2(k+1)^(k+1)/(2*2^K)=(k+1)^(k+1)/2^K=(k+1)*(k+1)^k/2^K .(4)
将(1)代入(4) 得
((K+1+1)/2)^(K+1)>(k+1)*k!=(k+1)!
即n=k+1时((n+1)/2)^n > n! 成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式