2个回答
展开全部
注意 e 的指数有 x, 要先代换掉。
令 t = u/√x , 则 dt = du/√x
f(x,y) = (1/√x)∫<0, yx^(3/2)>e^(u^2)du
f'x = [(-1/2)/x^(3/2)]∫<0, yx^(3/2)>e^(u^2)du + (3y/2)e^(y^2x^3)
f'y = xe^(y^2x^3)
f''xy = (-1/2)e^(y^2x^3) + (3/2)e^(y^2x^3) + 3y^2x^3e^(y^2x^3)
= (1+3y^2x^3)e^(y^2x^3)
f''yx = xe^(y^2x^3) = e^(y^2x^3) + 3y^2x^3e^(y^2x^3) = (1+3y^2x^3)e^(y^2x^3)
f''xy = f''yx
令 t = u/√x , 则 dt = du/√x
f(x,y) = (1/√x)∫<0, yx^(3/2)>e^(u^2)du
f'x = [(-1/2)/x^(3/2)]∫<0, yx^(3/2)>e^(u^2)du + (3y/2)e^(y^2x^3)
f'y = xe^(y^2x^3)
f''xy = (-1/2)e^(y^2x^3) + (3/2)e^(y^2x^3) + 3y^2x^3e^(y^2x^3)
= (1+3y^2x^3)e^(y^2x^3)
f''yx = xe^(y^2x^3) = e^(y^2x^3) + 3y^2x^3e^(y^2x^3) = (1+3y^2x^3)e^(y^2x^3)
f''xy = f''yx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |