cosx的n次方积分
解答过程如下:
Let Im,n=∫(sinx)^baim*(cosx)^ndx
then Im,n=(sinx)^(m+1)*(cosx)^(n-1)-
∫(sinx)[(sinx)^m*(cosx)^(n-1)]'dx
=(sinx)^(m+1)*(cosx)^(n-1)-
∫[m(sinx)^m*(cosx)^n-(n-1)(sinx)^(m+2)*(cosx)^(n-1)]dx
=(sinx)^(m+1)*(cosx)^(n-1)-mIm,n+(n-1)Im+2,n-2
so (m+1)Im,n=(sinx)^(m+1)*(cosx)^(n-1)+(n-1)Im+2,n-2
用此递推公式求解
sin(ax)*cos(bx)
=(1/2)*[sin(a+b)x+sin(a-b)x]
so ∫sin(ax)*cos(bx)dx
=-(1/2)*[cos(a+b)x/(a+b)+cos(a-b)x/(a-b)]+C
扩展资料
记忆规律
2、公式中因式每项的分子从n-1开始,每项减2,直到1;
3、n为偶时,最后乘π/2;n为奇时,最后乘1(换而言之,也可视为不再用乘)。
5、形象记忆法:从n开始写分数,可以视为火箭发射倒数计时,成功数到1则视为点火发射成功,乘上二分之派。
广告 您可能关注的内容 |