2个回答
展开全部
(13)
f(x)=∫(0->x) xsin(t^2) dt
=x∫(0->x) sin(t^2) dt
f'(x)=∫(0->x) sin(t^2) dt + xsin(x^2)
(11)
f(x) = 1/(1+x^2) + x^2.∫(0->1) f(x) dx
let
C=∫(0->1) f(x) dx
f(x) = 1/(1+x^2) + x^2.∫(0->1) f(x) dx
∫(0->1) f(x) dx=∫(0->1) [1/(1+x^2) + Cx^2 ] dx
C = [ arctanx +(1/3)Cx^3]|∫(0->1)
= π/4 + (1/3)C
(2/3)C=π/4
C =3π/8
=> ∫(0->1) f(x) dx =3π/8
f(x)=∫(0->x) xsin(t^2) dt
=x∫(0->x) sin(t^2) dt
f'(x)=∫(0->x) sin(t^2) dt + xsin(x^2)
(11)
f(x) = 1/(1+x^2) + x^2.∫(0->1) f(x) dx
let
C=∫(0->1) f(x) dx
f(x) = 1/(1+x^2) + x^2.∫(0->1) f(x) dx
∫(0->1) f(x) dx=∫(0->1) [1/(1+x^2) + Cx^2 ] dx
C = [ arctanx +(1/3)Cx^3]|∫(0->1)
= π/4 + (1/3)C
(2/3)C=π/4
C =3π/8
=> ∫(0->1) f(x) dx =3π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询