高等数学中值定理

 我来答
帐号已注销

2020-11-25 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2.7万
采纳率:80%
帮助的人:887万
展开全部
极值定理

极值定理也叫最大最小值定理,它的含义非常直观:如果函数f(x)在区间[a,b]上连续的函数,必然存在最大值和最小值,并且取到最大值和最小值至少一次。

这是一个非常有名的定理,定理的内容很直观,也不难理解。但是证明它不太容易,是由区间套定理与B-M定理等多个定理推导得到的,这段证明过程比较复杂,由于篇幅和水平的限制,本文当中只能跳过这部分,感兴趣的同学可以自行了解。

我们假设m和M分别是区间[a, b]上函数f(x)的最小值和最大值,那么根据极值定理,可以得到以下式子成立:

[公式]

这个式子光看可能会觉得有些复杂,但是我们把图画出来之后非常简单:

上图当中灰色阴影部分就是定积分的结果,蓝色的矩形面积是m(b-a),大的矩形面积是M(b-a)。

通过几何面积的关系我们可以很容易证明结论。

数学证明也很简单,由于m和M分别是最小值和最大值,所以我们可以得到[公式]。我们把常数也看成是函数,进行积分,于是可以得到:

[公式]

两边积分的结果就是矩形面积,于是我们就得到了证明。

积分中值定理

极值定理非常简单,但是是很多定理的基础,比如我们的积分中值定理就和它密切相关。

我们对上面的式子做一个简单的变形,由于b-a是常数并且大于0,所以我们在[公式]这个不等式两边同时除以b-a,可以得到:

[公式]

我们把[公式]这个式子看成一个整体,它的值位于函数在区间的最大值和最小值之间。根据连续函数的介值定理,我们一定可以在[a, b]上找到一点[公式],使得f(x)在[公式]这点的取值与这个数值相等,也就是说:

[公式]

上面这个式子就是积分中值定理了,这里有两点要注意,我们先来说简单的一点,就是我们用到了连续函数介值定理。所以限定了这必须是一个连续函数,否则的话,可能刚好函数在[公式]点处没有定义。这个也是定理成立的先决条件。

第二点是简单介绍一下连续函数的介值定理,它的含义是说对于一个在区间[a, b]上连续的函数,对于任一在其最大值和最小值之间的常数,我们必然可以在区间[a, b]上找到一点,使得该点的函数值等于这个常数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式