
设三阶矩阵A的特征值为1,2,-3,求|A*+3A+2E|
1个回答
展开全部
A*=|A|A逆
A*α=|A|A逆α
Aα=λα
A逆Aα=λA逆α
α=λA逆α
(|A|/λ)α=A*α
故A*的特征值为|A|/λ
|A|=1*2*(-3)=-6
所以A*的特征值为-6/1,-6/2,-6/3,即-6,-3,2
A*—3A+2E的特征值为
-6-3+2=-7
-3-6+2=-7
2+9+2=13
所以|A*—3A+2E|=-7*-7*13=637
扩展资料
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

2025-05-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询