333333乘以333334巧算
333333×333334
=111111×3×333334
=111111×1000002
=111111222222
巧算或简算包括乘法,除法的分配律,结合律,交换律,加法交换、结合等,这需要在某个算式中找出,找到了可以应用的定律,及每个数的分解数,就可以巧妙地算出答案了。
扩展资料:
方法:
一、顺逆相加:用“顺逆相加”算式可求出若干个连续数的和。
二、凑整巧算:用“凑整方法”,常常能使计算变得比较简便、快速。
三、恒等变形:是一种重要的思想和方法,也是一种重要的解题技巧。
四、拆数加减:在分数加减法运算中,把一个分数拆成两个分数相减 或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可 大大地简化运算。
333333×333334
=111111×3×333334
=111111×1000002
=111111222222
乘法公式是整式乘法的重要内容,准确、熟练的掌握乘法公式对于学好整式乘法乃至整式的其他运算都有着重要的意义。乘法公式是最常用、最基础的公式,可以由此而推导出其它公式。
扩展资料:
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
333333×333334
=111111×3×333334
=111111×1000002
=111111222222
扩展资料
简便运算算法
1、加法结合律
加法结合律为(a+b)+c=a+(b+c)。
例如,8+1+9=8+(1+9)=8+10=18
2、加法交换律
a+c=c+a。
例如,8+5=5+8=13。
3、乘法结合律
(axb)xc=ax(bxc)。
例如,3x2.5x4=3x(2.5x4)=3x10=30。
4、乘法分配律
(a+b)xc=axc+bxc。
333333×333334
=333333×333333+333333
=111111×999999+111111+222222
=111111×(999999+1)+222222
=111111×1000000+222222
=111111000000+222222
=111111222222.
=999999/3 x333334
=(1000000-1)/3 x333334
=(333334000000-333334)/3
=333333666666/3
=111111222222