极限什么时候分左右?
1个回答
展开全部
在分段函数的间断点处的极限,连续,导数等一切性质讨论的时候,都是需要分左右来分别进行讨论的。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。
如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。
解决问题的极限思想:
极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。
数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了‘极限’的‘无限逼近’的思想方法,才能够得到无比精确的计算答案。
人们通过考察某些函数的一连串数不清的越来越精密的近似值的趋向,趋势,可以科学地把那个量的极准确值确定下来,这需要运用极限的概念和以上的极限思想方法。要相信,用极限的思想方法是有科学性的,因为可以通过极限的函数计算方法得到极为准确的结论。
以上内容参考 百度百科—极限
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询