为什么需要证明「1+1=2」?
1个回答
展开全部
因为:不是证明1+1=2,而是在证明哥德巴赫猜想:
(a)任何一个≥6之偶数,都可以表示成两个奇质数之和。
(b)任何一个≥9之奇数,都可以表示成三个奇质数之和。
数学上,非常有名的“(1+1)”,它就是著名的哥德巴赫猜想。为了打破这个猜想,需要证明“1+1=2”。18世纪时,德国数学家哥德巴赫偶然发现,每个不小于6的偶数都是两个奇素数之和。例如3+3=6; 11+13=24。他试图证明自己的发现,却屡战屡败。
1742年,无可奈何的哥德巴赫只好求助当时世界上最有权威的瑞士数学家欧拉,提出了自己的猜想。欧拉很快回信说,这个猜想肯定成立,但他无法证明。
数的出现:
当某个原始人第一个意识到1+1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。
人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询