请问各位大神,这题为什么不能用洛必达法则求解?(以下是本人和答案的求解过程)
4个回答
展开全部
问题出在第一步,a=1的时候,ax+bx²~x,而ln(x+1)~x此时,两个对x是等阶的,不能在减法中来进行等价代换,这种题型一般用泰勒比较简单。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
正确的应该是:
=lim[1/(1+x) - (a + 2bx)]/(2x)
=1/2 * lim [1 - (a+2bx)(1+x)]/[x(1+x)] 注:分子、分母同乘以 (1+x)
=1/2 * lim [1 - (a + ax + 2bx + 2bx²)]/[x(x+1)]
=1/2 * lim [(1-a) - (a+2b)x - 2bx²)]/(x²+x)
既然该极限存在,那么,做到这一步以后,可以看出分子、分母的极限肯定都还是趋于无穷小。
因此,
(1-a) = 0
所以,
a = 1
继续使用罗必塔法则:
=1/2 * lim [-(a+2b) - 4bx]/(2x+1)
=1/2 * lim [-(a+2b) - 4b * 0]/(2 * 0 + 1)
=1/2 * lim [-(a+2b)]/1 = 2
所以,
a+2b = -4
因此,b = -5/2
=lim[1/(1+x) - (a + 2bx)]/(2x)
=1/2 * lim [1 - (a+2bx)(1+x)]/[x(1+x)] 注:分子、分母同乘以 (1+x)
=1/2 * lim [1 - (a + ax + 2bx + 2bx²)]/[x(x+1)]
=1/2 * lim [(1-a) - (a+2b)x - 2bx²)]/(x²+x)
既然该极限存在,那么,做到这一步以后,可以看出分子、分母的极限肯定都还是趋于无穷小。
因此,
(1-a) = 0
所以,
a = 1
继续使用罗必塔法则:
=1/2 * lim [-(a+2b) - 4bx]/(2x+1)
=1/2 * lim [-(a+2b) - 4b * 0]/(2 * 0 + 1)
=1/2 * lim [-(a+2b)]/1 = 2
所以,
a+2b = -4
因此,b = -5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x->0
ln(1+x) = x-(1/2)x^2+o(x^2)
ln(1+x) - (ax+bx^2)
=(1-a)x + (-1/2-b)x^2 =o(x^2)
lim(x->0) [ln(1+x) -(ax+bx^2) ]/x^2=2
=>
1-a=0 and -1/2-b=2
a=1 and b=-5/2
ln(1+x) = x-(1/2)x^2+o(x^2)
ln(1+x) - (ax+bx^2)
=(1-a)x + (-1/2-b)x^2 =o(x^2)
lim(x->0) [ln(1+x) -(ax+bx^2) ]/x^2=2
=>
1-a=0 and -1/2-b=2
a=1 and b=-5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询