求ux+uy=1偏微分方程
展开全部
37位粉丝
这是典型的热传导方程,可以用经典的分离变量法来求解:
令u(x,t)=f(x)g(t),那么代入原方程得到:
fg`=f``g
不妨记f``/f=g`/g=-λ,得到两个微分方程:
f``+λf=0
g`+λg=0
并注意边界条件:
u(0,t)=f(0)g(t)=0,即f(0)=0
u`(1,t)=f`(1)g(t)=0,即f`(1)=0………………注意若g(t)等于0则有平凡解u=0,舍去;
将此两个条件代入f的方程就能解出一个f的特解:
特征方程r²+λ=0
当λ小于或等于0时,f的非零解(两个指数函数的和)无法满足边界条件;当λ大于0时,f的形式为两个三角函数,代入边界条件分析λ应满足cos√λ=0,所以λ=(2n-1)²π²/4(对应每个正整数n,共有无穷多个),每个λ又对应一个解,所以最后关于x的通解是n个解的和;
在没有其它关于g的条件时方程的通解就是这个特解乘以关于t的任意函数。
题目的后两问就是添加关于t的边界条件从而解出g的方法(特别注意要把λ代入g的方程),解法就是经典的一阶微分方程的解法,留给题主自行解决。最后再把关于x和t的解乘起来就OK了!
网页书写比较麻烦,请参考《数理方程》中有关分离变量法的部分。
这是典型的热传导方程,可以用经典的分离变量法来求解:
令u(x,t)=f(x)g(t),那么代入原方程得到:
fg`=f``g
不妨记f``/f=g`/g=-λ,得到两个微分方程:
f``+λf=0
g`+λg=0
并注意边界条件:
u(0,t)=f(0)g(t)=0,即f(0)=0
u`(1,t)=f`(1)g(t)=0,即f`(1)=0………………注意若g(t)等于0则有平凡解u=0,舍去;
将此两个条件代入f的方程就能解出一个f的特解:
特征方程r²+λ=0
当λ小于或等于0时,f的非零解(两个指数函数的和)无法满足边界条件;当λ大于0时,f的形式为两个三角函数,代入边界条件分析λ应满足cos√λ=0,所以λ=(2n-1)²π²/4(对应每个正整数n,共有无穷多个),每个λ又对应一个解,所以最后关于x的通解是n个解的和;
在没有其它关于g的条件时方程的通解就是这个特解乘以关于t的任意函数。
题目的后两问就是添加关于t的边界条件从而解出g的方法(特别注意要把λ代入g的方程),解法就是经典的一阶微分方程的解法,留给题主自行解决。最后再把关于x和t的解乘起来就OK了!
网页书写比较麻烦,请参考《数理方程》中有关分离变量法的部分。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询