y=sin(2x-π/3)的单调递增区间是?
6个回答
展开全部
y=3sin(π/6-3x)=-3sin(3x-π/6),x∈[-π/2,π/2]的单调递增区间即y=3sin(3x-π/6)x∈[-π/2,π/2]的单调递减区间,由2kπ
π/2<=3x-π/6<=2kπ
3π/2,2kπ/3
2π/9<=x<=2kπ/3
5π/9,
k=-1,0时-4π/9<=x<=-π/9,2π/9<=x<=5π/9,结合x∈[-π/2,π/2]得
y=3sin(π/6-3x)x∈[-π/2,π/2]的单调递增区间为:[-4π/9,-π/9],[2π/9,π/2]
π/2<=3x-π/6<=2kπ
3π/2,2kπ/3
2π/9<=x<=2kπ/3
5π/9,
k=-1,0时-4π/9<=x<=-π/9,2π/9<=x<=5π/9,结合x∈[-π/2,π/2]得
y=3sin(π/6-3x)x∈[-π/2,π/2]的单调递增区间为:[-4π/9,-π/9],[2π/9,π/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由2kπ-π/2≤2X-π/3≤2kπ+π/2(k∈Z)得
kπ-π/12≤X≤kπ+5π/12(k∈Z),
Y=sin(2X-π/3)的递增区间是
[kπ-π/12,kπ+5π/12](k∈Z).
{满意请采纳不懂可追问^_^o~
努力!}
kπ-π/12≤X≤kπ+5π/12(k∈Z),
Y=sin(2X-π/3)的递增区间是
[kπ-π/12,kπ+5π/12](k∈Z).
{满意请采纳不懂可追问^_^o~
努力!}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Y
=罪(π/
3-2X)=-SIN(2X-π/
3)
即寻求Y
=罪(2X-π/
3)保存时间间隔
2kπ+π/
2≤2倍-π/
3≤2kπ+3π/
2
2kπ+5π/
6≤2×≤2kπ11π/
6
Kπ5π/12≤X≤Kπ11π/12
BR
/>函数y
=
SIN(π/
3-2X)的单调递增的间隔
Kπ+5π/12Kπ+11π/12],K∈Z
=罪(π/
3-2X)=-SIN(2X-π/
3)
即寻求Y
=罪(2X-π/
3)保存时间间隔
2kπ+π/
2≤2倍-π/
3≤2kπ+3π/
2
2kπ+5π/
6≤2×≤2kπ11π/
6
Kπ5π/12≤X≤Kπ11π/12
BR
/>函数y
=
SIN(π/
3-2X)的单调递增的间隔
Kπ+5π/12Kπ+11π/12],K∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令2kπ-π/2≤2x-π/3≤2kπ+π/2
解得 kπ-π/12≤x≤kπ+5π/12
即单调递增区间为[kπ-π/12,kπ+5π/12],k是整数
解得 kπ-π/12≤x≤kπ+5π/12
即单调递增区间为[kπ-π/12,kπ+5π/12],k是整数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=sin(2x-π/3)的单调递增区间是
2kPai-Pai/2<=2x-Pai/3<=2kPai+Pai/2
即有[kPai-Pai/12,kPai+5Pai/12]
2kPai-Pai/2<=2x-Pai/3<=2kPai+Pai/2
即有[kPai-Pai/12,kPai+5Pai/12]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询