如何证明两个收敛数列相加减结果仍是一个收敛数列?

 我来答
晓晓老师聊民生
高能答主

2021-11-14 · 遇到民生问题找晓晓老师帮忙。
晓晓老师聊民生
采纳数:313 获赞数:139330

向TA提问 私信TA
展开全部

证明两个收敛数列相加减结果仍是一个收敛数列:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。

证明数列收敛通常是落实到定义上或者证明数列的极限是固定值。比如数列an=a0+1/n,随着n增大,lim(an)=a0,因此可证明数列{an}是收敛的。



相关信息

(1)有穷数列和无穷数列:项数有限的数列为“有穷数列”(finite sequence);项数无限的数列为“无穷数列”(infinite sequence)。

(2)对于正项数列:(数列的各项都是正数的为正项数列),从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1。

(3)周期数列:各项呈周期性变化的数列叫做周期数列(如三角函数)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式