存在第一类间断点的函数真的没有原函数吗?

 我来答
古月先生爱生活
2021-11-15 · TA获得超过1.1万个赞
知道小有建树答主
回答量:1366
采纳率:100%
帮助的人:30万
展开全部

存在,但是它的严格叙述是:如果f(x)在区问(a,b)内的每一点都可导,则f'(x)在(a,b)内没有第一类间断点

因此,f(x)=|x|时,它的导数f'(x)满足:当x>0时,f'(x)=1;当x<0时,f'(x)=-1;当x=0时,f'(x)=f'(0)=不存在。

虽然x=0是f'(x)的第一类间断点,但这种不算。我们说导数没有第一类间断点,是指的导数在每一点都存在时,他没有第一类间断点,并不包括这种在一个点导数不存在这样的间断点。

这个结论的证明,是利用达布定理:如f(x)在[a,b]可导,且C在f'(a)与f'(b)之间,则存在c∈(a,b),使得f'(c)=C。达布定理的叙述和证明将后面的两张照片。

有了达布定理,我们就可以证明导数没有第一类间断点了,证明如下:如c是f'(x)的第一类间断点,我们分两种情况证明这是不可能的,一种情况是c是f'(x)跳跃间断点;另一种情况是c是f'(x)可去间断点

第一种情况可以在c点的左右找到两个点a,b使得f'(x)在[a,b]的值域不是连续的(即值域不是一个区间),这是因为c点是导数f'(x)的跳跃间断点。

这与达布定理矛盾。所以第一种情况是不可能的。第二种情况,因为f'(c)与f'(x)的右极限不相等,所以在c点的右边可以找到一点b,使得f'(x)在[c,b]的值域不是连续的(也就是说值域不是一个区间),这与达布定理矛盾,所以第二种情况也是不可能的。这样我们就证明了导数没有第一类间断点。

Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
茹翊神谕者

2023-09-04 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1635万
展开全部

没有原函数,详情如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式