数列的有界性是什么?

 我来答
亦是如此
高粉答主

2021-10-28 · 往前看,不要回头。
亦是如此
采纳数:6378 获赞数:544577

向TA提问 私信TA
展开全部

函数和数列均有:有界性。有界的意思是上下界都有,不是只要存在上界。

有界数列,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。一个数列{Xn},若既有上界又有下界,则称之为有界数列。

函数有界:若存在两个常数m和M,使函数y=f(x),x∈D 满足m≤f(x)≤M,x∈D。则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。

相关定理:

1、数列单调增且有上界或数列单调减且有下界,则数列有极限。

2、函数在某区间上不是有界就是无界,二者必属其一。

3、从几何学的角度很容易判别一个函数是否有界,如果找不到两条与x轴平行的直线使得函数的图形介于它们之间,那么函数一定是无界的。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式