正交变换的矩阵一定是正交矩阵吗?

 我来答
热爱电子数码
高能答主

2021-11-23 · 了解电子产品知识,分享数码相关资料。
热爱电子数码
采纳数:367 获赞数:28383

向TA提问 私信TA
展开全部

正交变换的矩阵一定是正交矩阵

线性代数中,正交变换是线性变换的一种,它从实内积空间V映射到V自身,且保证变换前后内积不变。 原因:

因为向量的模长与夹角都是用内积定义的,所以正交变换前后一对向量各自的模长和它们的夹角都不变。特别地,标准正交基经正交变换后仍为标准正交基。


在有限维空间中,正交变换在标准正交基下的矩阵表示为正交矩阵,其所有行和所有列也都各自构成V的一组标准正交基。因为正交矩阵的行列式只可能为+1或−1,故正交变换的行列式为+1或−1。

行列式为+1和−1的正交变换分别称为第一类的(对应旋转变换)和第二类的(对应瑕旋转变换)。可见,欧几里得空间中的正交变换只包含旋转、反射及它们的组合(即瑕旋转)。

北京埃德思远电气技术咨询有限公司
2023-07-25 广告
应该说是:实对称阵属于不同特征值的的特征向量是正交的。设Ap=mp,Aq=nq,其中A是实对称矩阵,m,n为其不同的特征值,p,q分别为其对应得特征向量.则p1(Aq)=p1(nq)=np1q(p1A)q=(p1A1)q=(AP)1q=(m... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式