向量坐标运算公式总结是什么?

 我来答
一粥美食
高能答主

2022-02-09 · 专注为您带来别样视角的美食解说
一粥美食
采纳数:7300 获赞数:462672

向TA提问 私信TA
展开全部

两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为a·b=a1b1+a2b2+……+anbn。

在一个向量空间V中,定义为V*V 的正定对称双线性形式函数即是V的数量积,而添加有一个数量积的向量空间即是内积空间,点积适用于交换律、结合律、分配律。

内积就是: ab=丨a丨丨b丨cosα (注意:内积没有方向,叫做点乘)。

外积就是: a×b=丨a丨丨b丨sinα (注意:外积是有方向的。)。

混合积具有下列性质:

三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)。

证明

为了更好地推导,加入三个轴对齐的单位向量i,j,k。

i,j,k满足以下特点:

i=jxk;j=kxi;k=ixj。

kxj=–i;ixk=–j;jxi=–k。

ixi=jxj=kxk=0。(0是指0向量)

由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系

这三个向量的特例就是i=(1,0,0)j=(0,1,0)k=(0,0,1)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式