椭圆焦点三角形面积公式推导是怎么样的?
1个回答
展开全部
椭圆焦点三角形面积公式推导过程如下:
先公式是 焦点三角形面积=b*b*tan(r/2)(其中b为短半轴长,r表示椭圆周角) 。设焦点为f1,f2,椭圆上任意点为a,设角f1af2为角r 推导方式是设三角形另外一点是a,af1+af2=2a af1向量-af2向量=f2f1向量。
两式都两边平方再整理得mn=2b^2/(1-cosa)(0度可以不考虑) 面积就是1/2mnsina,把上面带入即得。{注:m,n为af1和af2的长}。
椭圆的焦点求法如下:
1、焦点在横轴上时:焦点的纵坐标为0。椭圆长轴的平方减去椭圆短轴的平方,然后开方,将所得结果取正负值,即可得到两个焦点的横坐标。
2、焦点在纵轴上时:焦点的横坐标为0。椭圆长轴的平方减去椭圆短轴的平方,然后开方,将所得结果取正负值,即可得到两个焦点的纵坐标。
3、横坐标与纵坐标组合即可获得椭圆的焦点坐标。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询