椭圆焦点三角形面积公式推导是怎么样的?

 我来答
斌569斌
高能答主

2022-02-08 · 用力答题,不用力生活
知道小有建树答主
回答量:274
采纳率:100%
帮助的人:4.1万
展开全部

椭圆焦点三角形面积公式推导过程如下:

先公式是 焦点三角形面积=b*b*tan(r/2)(其中b为短半轴长,r表示椭圆周角) 。设焦点为f1,f2,椭圆上任意点为a,设角f1af2为角r 推导方式是设三角形另外一点是a,af1+af2=2a af1向量-af2向量=f2f1向量。

两式都两边平方再整理得mn=2b^2/(1-cosa)(0度可以不考虑) 面积就是1/2mnsina,把上面带入即得。{注:m,n为af1和af2的长}。

椭圆的焦点求法如下:

1、焦点在横轴上时:焦点的纵坐标为0。椭圆长轴的平方减去椭圆短轴的平方,然后开方,将所得结果取正负值,即可得到两个焦点的横坐标。

2、焦点在纵轴上时:焦点的横坐标为0。椭圆长轴的平方减去椭圆短轴的平方,然后开方,将所得结果取正负值,即可得到两个焦点的纵坐标。

3、横坐标与纵坐标组合即可获得椭圆的焦点坐标。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式